forked from recommenders-team/recommenders
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
144 lines (134 loc) · 4.98 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
from os import environ
from pathlib import Path
from setuptools import setup, find_packages
import site
import sys
import time
# workround for enabling editable user pip installs
site.ENABLE_USER_SITE = "--user" in sys.argv[1:]
# version
here = Path(__file__).absolute().parent
version_data = {}
with open(here.joinpath("recommenders", "__init__.py"), "r") as f:
exec(f.read(), version_data)
version = version_data.get("__version__", "0.0")
# Get the long description from the README file
with open(here.joinpath("recommenders", "README.md"), encoding="utf-8") as f:
LONG_DESCRIPTION = f.read()
HASH = environ.get("HASH", None)
if HASH is not None:
version += ".post" + str(int(time.time()))
install_requires = [
"numpy>=1.19", # 1.19 required by tensorflow 2.6
"pandas>1.0.3,<2",
"scipy>=1.0.0,<2",
"tqdm>=4.31.1,<5",
"matplotlib>=2.2.2,<4",
"scikit-learn>=0.22.1,<1",
"numba>=0.38.1,<1",
"lightfm>=1.15,<2",
"lightgbm>=2.2.1",
"memory_profiler>=0.54.0,<1",
"nltk>=3.4,<4",
"pydocumentdb>=2.3.3<3", # TODO: replace with azure-cosmos
"seaborn>=0.8.1,<1",
"transformers>=2.5.0,<5",
"bottleneck>=1.2.1,<2",
"category_encoders>=1.3.0,<2",
"jinja2>=2,<4",
"pyyaml>=5.4.1,<6",
"requests>=2.0.0,<3",
"cornac>=1.1.2,<2",
"retrying>=1.3.3",
"pandera[strategies]>=0.6.5", # For generating fake datasets
]
# shared dependencies
extras_require = {
"examples": [
"azure.mgmt.cosmosdb>=0.8.0,<1",
"hyperopt>=0.1.2,<1",
"ipykernel>=4.6.1,<7",
"jupyter>=1,<2",
"locust>=1,<2",
"papermill>=2.1.2,<3",
"scrapbook>=0.5.0,<1.0.0",
],
"gpu": [
"nvidia-ml-py3>=7.352.0",
# TensorFlow compiled with CUDA 11.2, cudnn 8.1
"tensorflow~=2.6.1;python_version=='3.6'",
"tensorflow~=2.7.0;python_version>='3.7'",
"tf-slim>=1.1.0",
"torch>=1.8", # for CUDA 11 support
"fastai>=1.0.46,<2",
],
"spark": [
"databricks_cli>=0.8.6,<1",
"pyarrow>=0.12.1,<7.0.0",
"pyspark>=2.4.5,<3.2.0",
],
"dev": [
"black>=18.6b4,<21",
"pytest>=3.6.4",
"pytest-cov>=2.12.1",
"pytest-mock>=3.6.1", # for access to mock fixtures in pytest
"pytest-rerunfailures>=10.2", # to mark flaky tests
],
}
# for the brave of heart
extras_require["all"] = list(set(sum([*extras_require.values()], [])))
# the following dependencies need additional testing
extras_require["experimental"] = [
# xlearn requires cmake to be pre-installed
"xlearn==0.40a1",
# VW C++ binary needs to be installed manually for some code to work
"vowpalwabbit>=8.9.0,<9",
]
extras_require["nni"] = [
# nni needs to be upgraded
"nni==1.5",
]
# The following dependencies can be installed as below, however PyPI does not allow direct URLs.
# Surprise needs to be built from source because of the numpy <= 1.19 incompatibility
# Requires pip to be run with the --no-binary option
# "scikit-surprise@https://github.com/NicolasHug/Surprise/archive/refs/tags/v1.1.1.tar.gz",
# Temporary fix for pymanopt, only this commit works with TF2
# "pymanopt@https://github.com/pymanopt/pymanopt/archive/fb36a272cdeecb21992cfd9271eb82baafeb316d.zip",
setup(
name="recommenders",
version=version,
description="Microsoft Recommenders - Python utilities for building recommender systems",
long_description=LONG_DESCRIPTION,
long_description_content_type="text/markdown",
url="https://github.com/microsoft/recommenders",
project_urls={
"Documentation": "https://microsoft-recommenders.readthedocs.io/en/stable/",
"Wiki": "https://github.com/microsoft/recommenders/wiki",
},
author="RecoDev Team at Microsoft",
author_email="[email protected]",
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Information Technology",
"Intended Audience :: Science/Research",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development :: Libraries :: Python Modules",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX :: Linux",
"Operating System :: MacOS",
],
extras_require=extras_require,
keywords="recommendations recommendation recommenders recommender system engine "
"machine learning python spark gpu",
install_requires=install_requires,
package_dir={"recommenders": "recommenders"},
python_requires=">=3.6, <3.9", # latest Databricks versions come with Python 3.8 installed
packages=find_packages(where=".", exclude=["contrib", "docs", "examples", "scenarios", "tests", "tools"]),
setup_requires=["numpy>=1.15"]
)