-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCNN.py
86 lines (74 loc) · 2.74 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
from time import time
class CNN(nn.Module):
def __init__(self,in_channels=1,num_classes=10):
super(CNN,self).__init__()
self.conv1 = nn.Conv2d(in_channels=1,out_channels=8,kernel_size=(3,3),stride=(1,1),padding=(1,1))
self.pool = nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
self.conv2 = nn.Conv2d(in_channels=8,out_channels=16,kernel_size=(3,3),stride=(1,1),padding=(1,1))
self.fc1 = nn.Linear(16*7*7,num_classes)
def forward(self,x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0],-1)
x = self.fc1(x)
return x
in_channels = 1
num_classes = 10
batch_size = 128
lr_rate = 0.01
epochs = 4
train_dataset = datasets.MNIST(root='data/',
train=True,
transform=transforms.ToTensor(),
download=False)
train = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='data/',
train=False,
transform=transforms.ToTensor(),
download=False)
test = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
print(train)
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(),lr=lr_rate)
t1 = time()
for epoch in range(epochs):
for batch_idx,(data,targets) in enumerate(train):
#data = data.reshape(data.shape[0],-1)
scores = model(data)
loss = criterion(scores,targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
t2 = time()
def check_acc(loader,model):
if loader.dataset.train:
print("On train data:")
else:
print("On test data:")
correct,samples =0,0
model.eval()
with torch.no_grad():
net_acc,count=0,0
for x,y in loader:
count+=1
#x = x.reshape(x.shape[0],-1)
scores = model(x)
_,predictions = scores.max(1)
correct+=(predictions==y).sum()
samples+=predictions.size(0)
net_acc+=float(correct)/float(samples)*100
print("Accuracy is: ",np.round(net_acc/count,2))
check_acc(train,model)
check_acc(test,model)
print("Time taken in training loop:",(t2-t1))