-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatom.xml
445 lines (193 loc) · 11.6 KB
/
atom.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>邪云</title>
<subtitle>无尘</subtitle>
<link href="https://axieyun.top/atom.xml" rel="self"/>
<link href="https://axieyun.top/"/>
<updated>2022-10-29T13:11:06.675Z</updated>
<id>https://axieyun.top/</id>
<author>
<name>Axieyun</name>
</author>
<generator uri="https://hexo.io/">Hexo</generator>
<entry>
<title></title>
<link href="https://axieyun.top/posts/0.html"/>
<id>https://axieyun.top/posts/0.html</id>
<published>2022-10-29T13:07:24.005Z</published>
<updated>2022-10-29T13:11:06.675Z</updated>
<summary type="html"><h3 id="效果"><a href="#效果" class="headerlink" title="效果"></a>效果</h3><p><img</summary>
</entry>
<entry>
<title>回归建模的完整流程</title>
<link href="https://axieyun.top/posts/55b3.html"/>
<id>https://axieyun.top/posts/55b3.html</id>
<published>2022-08-30T05:22:31.000Z</published>
<updated>2022-08-31T04:20:51.615Z</updated>
<summary type="html"><p>==建立回归模型的一般步骤如下图==</p>
<p><img</summary>
</entry>
<entry>
<title>abd使用</title>
<link href="https://axieyun.top/posts/c786.html"/>
<id>https://axieyun.top/posts/c786.html</id>
<published>2022-07-24T05:21:44.000Z</published>
<updated>2022-07-24T05:28:29.551Z</updated>
<summary type="html"><h3 id="开启服务"><a href="#开启服务" class="headerlink" title="开启服务"></a>开启服务</h3><pre class=" language-cmd"><code class="language-cmd">adb</summary>
</entry>
<entry>
<title>BP神经网络</title>
<link href="https://axieyun.top/posts/4cf.html"/>
<id>https://axieyun.top/posts/4cf.html</id>
<published>2022-07-10T06:38:05.000Z</published>
<updated>2022-07-13T12:48:13.637Z</updated>
<summary type="html"><h2 id="单层BP神经网络"><a href="#单层BP神经网络" class="headerlink" title="单层BP神经网络"></a>单层BP神经网络</h2><h3 id="概念"><a href="#概念" class="headerlink"</summary>
</entry>
<entry>
<title>数据的正态分布检验</title>
<link href="https://axieyun.top/posts/a048.html"/>
<id>https://axieyun.top/posts/a048.html</id>
<published>2022-07-04T11:06:04.000Z</published>
<updated>2022-07-04T11:15:55.297Z</updated>
<summary type="html"><h2 id="图检验"><a href="#图检验" class="headerlink" title="图检验"></a>图检验</h2><h3 id="Q-Q图"><a href="#Q-Q图" class="headerlink"</summary>
</entry>
<entry>
<title>判断变量之间的相关性</title>
<link href="https://axieyun.top/posts/b06c.html"/>
<id>https://axieyun.top/posts/b06c.html</id>
<published>2022-07-04T09:16:51.000Z</published>
<updated>2022-07-04T11:36:04.527Z</updated>
<summary type="html"><h3 id="皮尔逊(Pearson)相关系数(就是相关系数)"><a href="#皮尔逊(Pearson)相关系数(就是相关系数)" class="headerlink"</summary>
</entry>
<entry>
<title>conda使用</title>
<link href="https://axieyun.top/posts/d6d0.html"/>
<id>https://axieyun.top/posts/d6d0.html</id>
<published>2022-06-18T03:19:52.000Z</published>
<updated>2022-06-18T06:54:45.223Z</updated>
<summary type="html"><ul>
<li><p>查看源</p>
<pre class=" language-bash"><code class="language-bash">conda config</summary>
</entry>
<entry>
<title>matlab函数总结</title>
<link href="https://axieyun.top/posts/b5d8.html"/>
<id>https://axieyun.top/posts/b5d8.html</id>
<published>2022-06-14T05:57:20.000Z</published>
<updated>2022-06-14T07:46:53.090Z</updated>
<summary type="html"><p><em>这是不是你😜😜😜</em></p>
<p><img</summary>
</entry>
<entry>
<title>bubbleSort</title>
<link href="https://axieyun.top/posts/6b7c.html"/>
<id>https://axieyun.top/posts/6b7c.html</id>
<published>2022-06-09T05:53:35.000Z</published>
<updated>2022-06-09T07:11:23.550Z</updated>
<summary type="html"><h2 id="冒泡排序"><a href="#冒泡排序" class="headerlink" title="冒泡排序"></a>冒泡排序</h2><h3 id="思想"><a href="#思想" class="headerlink"</summary>
</entry>
<entry>
<title>quickSort</title>
<link href="https://axieyun.top/posts/cb7f.html"/>
<id>https://axieyun.top/posts/cb7f.html</id>
<published>2022-06-09T05:36:53.000Z</published>
<updated>2022-06-09T05:51:23.617Z</updated>
<summary type="html"><h2 id="快速排序"><a href="#快速排序" class="headerlink" title="快速排序"></a>快速排序</h2><h3 id="定义"><a href="#定义" class="headerlink"</summary>
</entry>
<entry>
<title>灰色预测模型</title>
<link href="https://axieyun.top/posts/abb4.html"/>
<id>https://axieyun.top/posts/abb4.html</id>
<published>2022-06-08T05:31:54.000Z</published>
<updated>2022-06-08T13:08:15.877Z</updated>
<summary type="html"><p><strong>简介</strong></p>
<ul>
<li>灰色预测的主要特点是模型使用的不是<strong>原始数据序列</strong>,而是生成的数据序列。</li>
<li>其核心体系是灰色模型(Grey Model,</summary>
</entry>
<entry>
<title>CLARA</title>
<link href="https://axieyun.top/posts/1bfe.html"/>
<id>https://axieyun.top/posts/1bfe.html</id>
<published>2022-06-08T00:47:10.000Z</published>
<updated>2022-06-08T00:47:10.602Z</updated>
</entry>
<entry>
<title>k-medoids</title>
<link href="https://axieyun.top/posts/657a.html"/>
<id>https://axieyun.top/posts/657a.html</id>
<published>2022-06-07T14:28:57.000Z</published>
<updated>2022-06-08T00:45:27.216Z</updated>
<summary type="html"><p><strong>k-medoids又称PAM(</strong>Partitioning Around Medoids<strong>)</strong></p>
<h3 id="优点"><a href="#优点" class="headerlink"</summary>
</entry>
<entry>
<title>EM聚类</title>
<link href="https://axieyun.top/posts/f1d8.html"/>
<id>https://axieyun.top/posts/f1d8.html</id>
<published>2022-06-07T09:06:32.000Z</published>
<updated>2022-06-07T09:06:32.544Z</updated>
</entry>
<entry>
<title>k均值聚类法</title>
<link href="https://axieyun.top/posts/b784.html"/>
<id>https://axieyun.top/posts/b784.html</id>
<published>2022-06-07T09:03:53.000Z</published>
<updated>2022-06-07T14:35:01.394Z</updated>
<summary type="html"><p><strong>基本思想</strong></p>
<ul>
<li>根据给定的==参数<em>k</em>==,先把n个对象粗略分为<em>k</em>类,</li>
<li>然后按照某种最优规则(通常表示为一个准则函数)修改不合理的分类,</li>
<li>直到准则函数</summary>
</entry>
<entry>
<title>聚类分析</title>
<link href="https://axieyun.top/posts/9c90.html"/>
<id>https://axieyun.top/posts/9c90.html</id>
<published>2022-06-07T04:37:54.000Z</published>
<updated>2022-06-08T01:45:54.209Z</updated>
<summary type="html"><p><strong>简介</strong></p>
<ul>
<li>聚类分析又称群分析,是对多个样本(或指标)进行定量分类的一种多元统计分析方法。</li>
<li>系统聚类法:每一步都要计算类的距离,计算量大、占内存</li>
<li><ul>
<li>==Q型聚类==分析</summary>
</entry>
<entry>
<title>二叉查找树</title>
<link href="https://axieyun.top/posts/3798.html"/>
<id>https://axieyun.top/posts/3798.html</id>
<published>2022-06-06T10:27:00.000Z</published>
<updated>2022-06-06T12:50:25.846Z</updated>
<summary type="html"><p><em>数据结构:定义一种数据结构并维护其性质</em></p>
<h4 id="性质"><a href="#性质" class="headerlink"</summary>
</entry>
<entry>
<title>方差分析</title>
<link href="https://axieyun.top/posts/111b.html"/>
<id>https://axieyun.top/posts/111b.html</id>
<published>2022-06-04T07:54:06.000Z</published>
<updated>2022-06-04T08:44:16.167Z</updated>
<summary type="html"><h2 id="方差分析"><a href="#方差分析" class="headerlink" title="方差分析"></a>方差分析</h2><ul>
<li>方差分析(analysis of</summary>
</entry>
<entry>
<title>伽马函数</title>
<link href="https://axieyun.top/posts/9680.html"/>
<id>https://axieyun.top/posts/9680.html</id>
<published>2022-06-04T03:49:19.000Z</published>
<updated>2022-06-04T03:52:59.227Z</updated>
<summary type="html"><h3 id="伽马函数"><a href="#伽马函数" class="headerlink" title="伽马函数"></a>伽马函数</h3><ul>
<li><p>伽马函数也称 tao 函数</p>
</li>
<li><p>卡方分布的概率密度函数和 Γ</summary>
</entry>
<entry>
<title></title>
<link href="https://axieyun.top/posts/0.html"/>
<id>https://axieyun.top/posts/0.html</id>
<published>2022-06-04T03:35:14.959Z</published>
<updated>2022-04-07T05:49:58.493Z</updated>
<summary type="html"><h3 id="语法"><a href="#语法" class="headerlink" title="语法"></a>语法</h3><pre class=" language-bash"><code class="language-bash"><span</summary>
</entry>
</feed>