Skip to content

Latest commit

 

History

History
 
 

RSHN

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

RSHN code

Adapted from CheriseZhu/RSHN.

We add GCN and GAT comparison and tried to reproduce the result in the RSHN paper.

running environment

  • Python 3.8.5
  • torch 1.4.0 cuda 10.1
  • dgl 0.5.2 cuda 10.1
  • torch_geometric 1.6.1 cuda 10.1 with latest torch_sparse etc. (Install as guided in here)

running procedure

python RSHN_gnn.py --dataset AIFB --model gcn
python RSHN_gnn.py --dataset AIFB --model gat
python RSHN_gnn.py --dataset MUTAG --model gcn
python RSHN_gnn.py --dataset MUTAG --model gat
python RSHN_gnn.py --dataset BGS --model gcn --sparse_input 1
python RSHN_gnn.py --dataset BGS --model gat --sparse_input 1 --weight_decay 5e-4 --epoch 60

performance report

It's very unreasonable that no validation set is split and the best score in test set among all epoches are reported. However, we follow this setting as in paper in this experiment.

GCN GAT RSHN
AIFB 97.22 100.0 97.22
MUTAG 79.41 80.88 82.35
BGS 96.55 100.0 93.1

The following content is from the initial CheriseZhu/RSHN repo.

RSHN

The implementation of our ICDM 2019 paper "Relation Structure-Aware Heterogeneous Graph Neural Network" RSHN. Slides.

Requirements

python == 3.6.2
torch == 1.1.0
numpy == 1.16.4
scipy == 1.2.0
torch_geometric == 1.0.0
numba == 0.42.1

How to use

Dataset

The data folder includes our propocessed data for training and testing.
The orginal datasets can be founded from here.

Model

The model folder includes our proposed model "RSHN".
The build_coarsened_line_graph folder includes utils used in model.
The torch_geometeric/nn/conv folder includes the designed convolution layers used in model.

Training/Testing

cd model
python RSHN.py --dataset AIFB --lr 0.01 --weight_decay 5e-4 --dim 16 --num_node_layer 2 --num_edge_layer 1 --dropout 0.6 --epoch 50

Citation

@inproceedings{zhu2019RSHN
author={Shichao Zhu and Chuan Zhou and Shirui Pan and Xingquan Zhu and Bin Wang},
title={Relation Structure-Aware Heterogeneous Graph Neural Network},
journal={IEEE International Conference On Data Mining (ICDM)},
year={2019}
}