-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstackproofs.tex
1710 lines (1500 loc) · 106 KB
/
stackproofs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt]{article} % use larger type; default would be 10pt
\usepackage{hyperref}
\usepackage{fullpage}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% packages
\usepackage[
type={CC},
modifier={by-nc-sa},
version={3.0},
]{doclicense}
\usepackage{authblk}
\usepackage[utf8]{inputenc} % set input encoding (not needed with xelatex)
\usepackage[strict]{changepage}
\usepackage{bold-extra}
%%% examples of article customizations
% these packages are optional, depending whether you want the features they provide.
% see the latex companion or other references for full information.
%%% page dimensions
\usepackage{geometry} % to change the page dimensions
\geometry{a4paper} % or letterpaper (us) or a5paper or....
% \geometry{margin=2in} % for example, change the margins to 2 inches all round
% \geometry{landscape} % set up the page for landscape
% read geometry.pdf for detailed page layout information
\usepackage{numdef}
\usepackage{graphicx} % support the \includegraphics command and options
% some of the article customisations are relevant for this class
\usepackage{amsmath,amsthm,calligra}
\usepackage{amsfonts} % math fonts such as \mathbb{}
\usepackage{amssymb} % \therefore
% \usepackage{bickham}
\usepackage{cryptocode}
\usepackage{framed}
% \usepackage[parfill]{parskip} % activate to begin paragraphs with an empty line rather than an indent
%%% packages
\usepackage{booktabs} % for much better looking tables
\usepackage{array} % for better arrays (eg matrices) in maths
\usepackage{paralist} % very flexible & customisable lists (eg. Enumerate/itemize, etc.)
\usepackage{verbatim} % adds environment for commenting out blocks of text & for better verbatim
\usepackage{subfig} % make it possible to include more than one captioned figure/table in a single float
% % these packages are all incorporated in the memoir class to one degree or another...
\usepackage{mathrsfs}
\usepackage{booktabs}
\usepackage{makecell}
\usepackage{adjustbox}
% \usepackage{pzccal}
% \DeclareFontFamily{OT1}{pzc}{}
% \DeclareFontShape{OT1}{pzc}{m}{it}{<-> s * [1.10] pzcmi7t}{}
% \DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}
\usepackage{pgfplots}
\renewcommand\theadalign{bc}
\renewcommand\theadfont{\bfseries}
\renewcommand\theadgape{\Gape[4pt]}
%%% headers & footers
\usepackage{fancyhdr} % this should be set after setting up the page geometry
\pagestyle{fancy} % options: empty, plain, fancy
\renewcommand{\headrulewidth}{0pt} % customise the layout...
\lhead{}\chead{}\rhead{}
\lfoot{}\cfoot{\thepage}\rfoot{}
%%% section title appearance
\usepackage{sectsty}
\allsectionsfont{\sffamily\mdseries\upshape} % (see the fntguide.pdf for font help)
% (this matches context defaults)
%%% toc (table of contents) appearance
\usepackage[nottoc,notlof,notlot]{tocbibind} % put the bibliography in the toc
\usepackage[titles,subfigure]{tocloft} % alter the style of the table of contents
\renewcommand{\cftsecfont}{\rmfamily\mdseries\upshape}
\renewcommand{\cftsecpagefont}{\rmfamily\mdseries\upshape} % no bold!
\usepackage[scr=esstix] % heavily sloped
% cal=esstix] % slightly sloped
{mathalpha}
%%% end article customizations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% macros
\newcommand{\code}[1]{\texttt{#1}}
\newcommand\tstrut{\rule{0pt}{2.6ex}} % = `top' strut
\newcommand\bstrut{\rule[-0.9ex]{0pt}{0pt}} % = `bottom' strut
\newcommand{\bgamma}{\boldsymbol{\gamma}}
\newcommand{\bsigma}{\boldsymbol{\sigma}}
\newcommand{\plonk}{\ensuremath{\mathcal{P} \mathfrak{lon}\mathcal{K}}\xspace}
\newcommand{\cq}{\ensuremath{\mathpgoth{cq}}\xspace}
\newcommand{\cqlin}{\ensuremath{\mathpgoth{cq}\mathscr{\text{\calligra{lin}}}}\xspace}
\newcommand{\cqstar}{\ensuremath{\mathpgoth{cq^{\mathbf{*}}}}\xspace}
\newcommand{\protogal}{{\normalfont\scshape Proto\bfseries{galaxy}}\xspace}
\newcommand{\stackproofs}{s{\ensuremath{\mathfrak{t} \mathpgoth {ack}}\bfseries{proofs}}\xspace}
\newcommand{\protostar}{{\scshape Protostar}\xspace}
\newcommand{\hypernova}{{HyperNova}\xspace}
\newcommand{\flookup}{\ensuremath{\mathsf{\mathpgoth{Flookup}}}\xspace}
\newcommand{\baloo}{\ensuremath{\mathrm{ba}\mathit{loo}}\xspace}
\newcommand{\caulkp}{\ensuremath{\mathsf{\mathrel{Caulk}\mathrel{\scriptstyle{+}}}}\xspace}
\newcommand{\caulk}{\ensuremath{\mathsf{Caulk}}\xspace}
\newcommand{\plookup}{\ensuremath{\mathpgoth{plookup}}\xspace}
\newcommand{\tablegroup}{\ensuremath{\mathbb{H}}\xspace}
\newcommand{\V}{\ensuremath{\mathbf{V}}\xspace}
\newcommand{\relbase}{\ensuremath{\rel_0}\xspace}
\mathchardef\mhyphen="2D
\newcommand{\Patrick}[1]{\textcolor{blue}{{\bf Patrick}: #1}}
\newcommand{\instbase}{\ensuremath{\inst_0}\xspace}
\newcommand{\witbase}{\ensuremath{\wit_0}\xspace}
\newcommand{\papertitle}{\stackproofs: Private proofs of stack and contract execution using \protogal}
%\newcommand{\authorname}}
\newcommand{\company}{}
\title{ \papertitle \\[0.72cm]}
% \author{}
% \author{ Liam Eagen \\ \tt{Alpen Labs} \and Ariel Gabizon \\ \tt{Zeta Function Technologies} }
\author[1]{Liam Eagen}
\author[2]{Ariel Gabizon}
\author[3]{Marek Sefranek}
\author[2]{Patrick Towa}
\author[2]{Zachary J. Williamson}
\affil[1]{Alpen Labs}
\affil[2]{Aztec Labs}
\affil[3]{TU Wien}
%
% \large{\authorname} \\[0.5cm] \large{\company}
% \\ {DRAFT}
%}
%\date{} % activate to display a given date or no date (if empty),
% otherwise the current date is printed
\DeclareMathAlphabet{\mathpgoth}{OT1}{pgoth}{m}{n}
\ProvidesPackage{numdef}
%% Ariel Macros:
% \num\newcommand{\G1}{\ensuremath{{\mathbb G}_1}\xspace}
\newcommand{\Gi}{\ensuremath{{\mathbb G}_i}\xspace}
\newcommand{\G}{\ensuremath{{\mathbb G}}\xspace}
\newcommand{\Gstar}{\ensuremath{{\mathbb G}^*}\xspace}
\newcommand{\x}{\ensuremath{\mathbf{x}}\xspace}
\newcommand{\z}{\ensuremath{\mathbf{z}}\xspace}
\newcommand{\X}{\ensuremath{\mathbf{X}}\xspace}
% \num\newcommand{\G2}{\ensuremath{{\mathbb G}_2}\xspace}
%\num\newcommand{\G11}{\ensuremath{\G1\setminus \set{0}}\xspace}
%\num\newcommand{\G21}{\ensuremath{\G2\setminus \set{0}}\xspace}
\newcommand{\grouppair}{\ensuremath{G^*}\xspace}
\newcommand{\prvperm}{\ensuremath{\mathrm{P_{\mathsf{\sigma}}}}\xspace}
\newcommand{\verperm}{\ensuremath{\mathrm{V_{\mathsf{\sigma}}}}\xspace}
\newcommand{\alg}{\ensuremath{\mathscr{A}}\xspace}
\newcommand{\Gt}{\ensuremath{{\mathbb G}_t}\xspace}
\newcommand{\F}{\ensuremath{\mathbb F}\xspace}
\newcommand{\Fstar}{\ensuremath{\mathbb F^*}\xspace}
\newcommand{\help}[1]{$#1$-helper\xspace}
\newcommand{\randompair}[1]{\ensuremath{\mathsf{randomPair}(#1)}\xspace}
\newcommand{\pair}[1]{$#1$-pair\xspace}
\newcommand{\pairs}[1]{$#1$-pairs\xspace}
\newcommand{\chalpoint}{\ensuremath{\mathfrak{z}}\xspace}
% \newcommand{\pairone}[1]{\G1-$#1$-pair\xspace}
% \newcommand{\pairtwo}[1]{\G2-$#1$-pair\xspace}
% \newcommand{\sameratio}[2]{\ensuremath{\mathsf{SameRatio}(#1,#2)}\xspace}
\newcommand{\vecc}[2]{\ensuremath{\left(#1\right)_{#2}}\xspace}
\newcommand{\players}{\ensuremath{[n]}\xspace}
\newcommand{\adv}{\ensuremath{\mathcal A}\xspace}
\newcommand{\advprime}{\ensuremath{\mathcal{A}'}\xspace}
\newcommand{\extprime}{\ensuremath{E'}\xspace}
\newcommand{\advrand}{\ensuremath{\mathsf{rand}_{\adv}}\xspace}
% \num\newcommand{\srs1}{\ensuremath{\mathsf{srs_1}}\xspace}
% \num\newcommand{\srs2}{\ensuremath{\mathsf{srs_2}}\xspace}
\newcommand{\srs}{\ensuremath{\mathsf{srs}}\xspace}
\newcommand{\regsrs}[1]{\ensuremath{\sett{\enc1{x^i}}{i\in \set{0,\ldots,#1-1}}}\xspace}
\newcommand{\srsm}{\ensuremath{\mathsf{srs}_M}\xspace}
\newcommand{\srsext}{\ensuremath{\mathsf{srs^*}}\xspace}
\newcommand{\srsbase}{\ensuremath{\mathsf{srs_0}}\xspace}
\newcommand{\srsi}{\ensuremath{\mathsf{srs_i}}\xspace}
\newcommand{\com}{\ensuremath{\mathsf{com}}\xspace}
\newcommand{\comperm}{\ensuremath{\mathsf{com_{\sigma}}}\xspace}
\newcommand{\cm}{\ensuremath{\mathsf{cm}}\xspace}
\newcommand{\cmsig}{\ensuremath{\mathsf{cm_\sigma}}\xspace}
\newcommand{\open}{\ensuremath{\mathsf{open}}\xspace}
\newcommand{\openperm}{\ensuremath{\mathsf{open_{\sigma}}}\xspace}
\newcommand{\sigof}[1]{\ensuremath{\sigma(#1)}\xspace}
\newcommand{\proverexp}{\ensuremath{\mathsf{e}}\xspace}
\newcommand{\reducedelems}{\ensuremath{\mathsf{r}}\xspace}
\newcommand{\ci}{\ensuremath{\mathrm{CI}}\xspace}
\renewcommand{\deg}{\ensuremath{\mathrm{deg}}\xspace}
\newcommand{\pairvec}[1]{$#1$-vector\xspace}
\newcommand{\Fq}{\ensuremath{\mathbb{F}_q}\xspace}
\newcommand{\randpair}[1]{\ensuremath{\mathsf{rp}_{#1}}\xspace}
\newcommand{\randpairone}[1]{\ensuremath{\mathsf{rp}_{#1}^{1}}\xspace}
\newcommand{\negl}{\ensuremath{\mathsf{negl}(\lambda)}\xspace}
\newcommand{\randpairtwo}[1]{\ensuremath{\mathsf{rp_{#1}^2}}\xspace}%the randpair in G2
% \newcommand{\nilp}{\ensuremath{\mathscr N}\xspace}
% \newcommand{\groupgen}{\ensuremath{\mathscr G}\xspace}
% \newcommand{\qap}{\ensuremath{\mathscr Q}\xspace}
\newcommand{\polprot}[4]{$(#1,#2,#3,#4)$-polynomial protocol}
\newcommand{\rangedprot}[5]{$#5$-ranged $(#1,#2,#3,#4)$-polynomial protocol}
\newcommand{\rej}{\ensuremath{\mathsf{reject}}\xspace}
\newcommand{\accept}{\ensuremath{\mathsf{accept}}\xspace}
\newcommand{\res}{\ensuremath{\mathsf{res}}\xspace}
% \newcommand{\sha}[1]{\ensuremath{\mathsf{COMMIT}(#1)}\xspace}
% \newcommand{\shaa}{\ensuremath{\mathsf{COMMIT}}\xspace}
\newcommand{\comm}[1]{\ensuremath{\enc1{#1(x)}}\xspace}
\newcommand{\defeq}{:=}
\newcommand{\B}{\ensuremath{\set{0,1}}\xspace}
\newcommand{\dom}{\ensuremath{H}\xspace}
\newcommand{\C}{\ensuremath{\vec{C}}\xspace}
\newcommand{\Btwo}{\ensuremath{\vec{B_2}}\xspace}
\newcommand{\treevecsimp}{\ensuremath{(\tau,\rho_A,\rho_A \rho_B,\rho_A\alpha_A,\rho_A\rho_B\alpha_B, \rho_A\rho_B\alpha_C,\beta,\beta\gamma)}\xspace}% The sets of elements used in simplifed relation tree in main text body
\newcommand{\rcptc}{random-coefficient subprotocol\xspace}
\newcommand{\rcptcparams}[2]{\ensuremath{\mathrm{RCPC}(#1,#2)}\xspace}
\newcommand{\verifyrcptcparams}[2]{\ensuremath{\mathrm{\mathsf{verify}RCPC}(#1,#2)}\xspace}
\newcommand{\randadv}{\ensuremath{\mathsf{rand}_{\adv}}\xspace}
\num\newcommand{\ex1}[1]{\ensuremath{#1\cdot g_1}\xspace}
\num\newcommand{\ex2}[1]{\ensuremath{#1\cdot g_2}\xspace}
\newcommand{\pr}{\mathrm{Pr}}
% \newcommand{\powervec}[2]{\ensuremath{(1,#1,#1^{2},\ldots,#1^{#2})}\xspace}
% \newcommand{\partition}{\ensuremath{\mathcal{T}}\xspace}
% \newcommand{\partof}[1]{\ensuremath{{\partition_{#1}}}\xspace}
% \num\newcommand{\out1}[1]{\ensuremath{\ex1{\powervec{#1}{d}}}\xspace}
% \num\newcommand{\out2}[1]{\ensuremath{\ex2{\powervec{#1}{d}}}\xspace}
% \newcommand{\nizk}[2]{\ensuremath{\mathrm{NIZK}(#1,#2)}\xspace}% #2 is the hash concatenation input
% \newcommand{\verifynizk}[3]{\ensuremath{\mathrm{VERIFY\mhyphen NIZK}(#1,#2,#3)}\xspace}
\newcommand{\protver}{protocol verifier\xspace}
\newcommand{\hash}{\ensuremath{\mathcal{H}}\xspace}
\newcommand{\mulgroup}{\ensuremath{\F^*}\xspace}
\newcommand{\lag}[1]{\ensuremath{L_{#1}}\xspace}
\newcommand{\sett}[2]{\ensuremath{\set{#1}_{#2}}\xspace}
\newcommand{\omegaprod}{\ensuremath{\alpha_{\omega}}\xspace}
\newcommand{\lagvec}[1]{\ensuremath{\mathrm{LAG}_{#1}}\xspace}
\newcommand{\trapdoor}{\ensuremath{r}}
\newcommand{\trapdoorext}{\ensuremath{r_{\mathrm{ext}}}\xspace}
% \newcommand{\trapdoorsim}{\ensuremath{r_{\mathrm{sim}}}\xspace}
\renewcommand{\sim}{\ensuremath{\mathrm{S}}\xspace}
\renewcommand{\mod}{\ensuremath{\;\mathrm{mod}\;}}
\newcommand{\hsub}{\ensuremath{H^*}\xspace}
\num\newcommand{\enc1}[1]{\ensuremath{\left[#1\right]_1}\xspace}
\newcommand{\enci}[1]{\ensuremath{\left[#1\right]_i}\xspace}
\num\newcommand{\enc2}[1]{\ensuremath{\left[#1\right]_2}\xspace}
\newcommand{\gen}{\ensuremath{\mathsf{gen}}\xspace}
\newcommand{\hgen}{\ensuremath{\omega}\xspace}
\newcommand{\gops}{\G1-operations\xspace}
\newcommand{\nlogngops}{$O(n\log n)$ \G1-operations\xspace}
\newcommand{\nlognfops}{$O(n\log n)$ \F-operations\xspace}
\newcommand{\fops}{\F-operations\xspace}
\newcommand{\prv}{\ensuremath{\mathsf{\mathbf{P}}}\xspace}
\newcommand{\prvpoly}{\ensuremath{\mathrm{P_{\mathsf{poly}}}}\xspace}
\newcommand{\prvpc}{\ensuremath{\mathrm{P_{\mathsf{PC}}}}\xspace}
\newcommand{\verpoly}{\ensuremath{\mathrm{V_{\mathsf{poly}}}}\xspace}
\newcommand{\verpc}{\ensuremath{\mathrm{V_{\mathsf{PC}}}}\xspace}
\newcommand{\ideal}{\ensuremath{\mathcal{I}}\xspace}
\newcommand{\prf}{\ensuremath{\mathsf{\pi}}\xspace}
\newcommand{\prfone}{\ensuremath{\mathsf{\pi_1}}\xspace}
% \newcommand{\simprv}{\ensuremath{\mathrm{P^{sim}}}\xspace}
%\newcommand{\enc}[1]{\ensuremath{\left[#1\right]}\xspace}
%\num\newcommand{\G0}{\ensuremath{\mathbf{G}}\xspace}
\newcommand{\GG}{\ensuremath{\mathbf{G^*}}\xspace} % would have liked to call this G01 but problem with name
\num\newcommand{\g0}{\ensuremath{\mathbf{g}}\xspace}
\newcommand{\inst}{\ensuremath{\phi}\xspace}
\newcommand{\newinst}{\ensuremath{\phi^*}\xspace}
\newcommand{\row}{\ensuremath{\mathsf{R}}\xspace}
\newcommand{\col}{\ensuremath{\mathsf{C}}\xspace}
\newcommand{\inp}{\ensuremath{\mathsf{x}}\xspace}
\newcommand{\wit}{\ensuremath{\mathsf{\omega}}\xspace}
\newcommand{\eps}{\ensuremath{\varepsilon}\xspace}
\newcommand{\inpF}{\ensuremath{\mathscr{x}}\xspace}
\newcommand{\witF}{\ensuremath{\mathscr{w}}\xspace}
\newcommand{\instFprime}{\ensuremath{\mathpgoth{x}}\xspace}
\newcommand{\witFprime}{\ensuremath{\mathpgoth{w}}\xspace}
\newcommand{\acchash}{\ensuremath{\mathscr{h}}\xspace}
\newcommand{\accnew}{\ensuremath{\mathscr{acc}}\xspace}
\newcommand{\cnt}{\ensuremath{\mathsf{count}}\xspace}
\newcommand{\ver}{\ensuremath{\mathsf{\mathbf{V}}}\xspace}
\newcommand{\verpg}{\ensuremath{\ver^{\predinst,\cm}_{PG}}\xspace}
\newcommand{\per}{\ensuremath{\mathsf{\mathbf{P}}}\xspace}
\newcommand{\perpg}{\ensuremath{\per_{PG}}\xspace}
\newcommand{\sonic}{\ensuremath{\mathsf{Sonic}}\xspace}
\newcommand{\aurora}{\ensuremath{\mathsf{Aurora}}\xspace}
\newcommand{\auroralight}{\ensuremath{\mathsf{Auroralight}}\xspace}
\newcommand{\groth}{\ensuremath{\mathsf{Groth'16}}\xspace}
\newcommand{\kate}{\ensuremath{\mathsf{KZG}}\xspace}
\newcommand{\rel}{\ensuremath{\mathcal{R}}\xspace}
\newcommand{\relrand}{\ensuremath{\mathcal{R^{\mathsf{rand}}}}\xspace}
\newcommand{\lang}{\ensuremath{\mathcal{L}}\xspace}
\newcommand{\params}{\ensuremath{\mathsf{params}_{\inst}}\xspace}
\newcommand{\protparams}{\ensuremath{\mathsf{params}_{\inst}^\advv}\xspace}
\num\newcommand{\p1}{\ensuremath{P_1}\xspace}
\newcommand{\advv}{\ensuremath{\mathcal{A}^{\mathbf{*}}}\xspace} % the adversary that uses protocol adversary as black box
\newcommand{\crs}{\ensuremath{\sigma}\xspace}
%\num\newcommand{\crs1}{\ensuremath{\mathrm{\sigma}_1}\xspace}
%\num\newcommand{\crs2}{\ensuremath{\mathrm{\sigma}_2}\xspace}
\newcommand{\set}[1]{\ensuremath{\left\{#1\right\}}\xspace}
% \newcommand{\hgen}{\ensuremath{\mathbf{\omega}}\xspace}
\newcommand{\vgen}{\ensuremath{\mathbf{g}}\xspace}
% \renewcommand{\sim}{\ensuremath{\mathsf{sim}}\xspace}%the distribution of messages when \advv simulates message of \p1
\newcommand{\real}{\ensuremath{\mathsf{real}}\xspace}%the distribution of messages when \p1 is honest and \adv controls rest of players
\newcommand{\koevec}[2]{\ensuremath{(1,#1,\ldots,#1^{#2},\alpha,\alpha #1,\ldots,\alpha #1^{#2})}\xspace}
\newcommand{\mida}{\ensuremath{A_{\mathrm{mid}}}\xspace}
\newcommand{\midb}{\ensuremath{B_{\mathrm{mid}}}\xspace}
\newcommand{\midc}{\ensuremath{C_{\mathrm{mid}}}\xspace}
\newcommand{\chal}{\ensuremath{\mathsf{challenge}}\xspace}
\newcommand{\attackparams}{\ensuremath{\mathsf{params^{pin}}}\xspace}
\newcommand{\pk}{\ensuremath{\mathsf{pk}}\xspace}
\newcommand{\attackdist}[2]{\ensuremath{AD_{#1}}\xspace}
% \renewcommand{\neg}{\ensuremath{\mathsf{negl}(\lambda)}\xspace}
\newcommand{\ro}{\ensuremath{{\mathscr R}}\xspace}
\newcommand{\elements}[1]{\ensuremath{\mathsf{elements}_{#1}}\xspace}
\num\newcommand{\elmpowers1}[1]{\ensuremath{\mathrm{\mathsf{e}}^1_{#1}}\xspace}
\num\newcommand{\elmpowers2}[1]{\ensuremath{\mathrm{\mathsf{e}}^2_{#1}}\xspace}
\newcommand{\elempowrs}[1]{\ensuremath{\mathsf{e}_{#1}}\xspace}
\newcommand{\secrets}{\ensuremath{\mathsf{secrets}}\xspace}
\newcommand{\polysofdeg}[1]{\ensuremath{\F_{< #1}[X]}\xspace}
\newcommand{\polysofdegeq}[1]{\ensuremath{\F_{\leq #1}[X]}\xspace}
\newcommand{\pols}{\ensuremath{\F[X]}\xspace}
\newcommand{\bivar}[1]{\ensuremath{\F_{< #1}[X,Y]}\xspace}
\newcommand{\sig}{\ensuremath{\mathscr{S}}\xspace}
\newcommand{\prot}{\ensuremath{\mathscr{P}}\xspace}
\newcommand{\protstar}{\ensuremath{\mathscr{P}^*}\xspace}
\newcommand{\PCscheme}{\ensuremath{\mathscr{S}}\xspace}
\newcommand{\protprime}{\ensuremath{\mathscr{P^*}}\xspace}
\newcommand{\sigprv}{\ensuremath{\mathsf{P_{sc}}}\xspace}
\newcommand{\sigver}{\ensuremath{\mathsf{V_{sc}}}\xspace}
\newcommand{\sigpoly}{\ensuremath{\mathsf{S_{\sigma}}}\xspace}
\newcommand{\idpoly}{\ensuremath{\mathsf{S_{ID}}}\xspace}
\newcommand{\idpolyevala}{\ensuremath{\mathsf{\bar{s}_{ID1}}}\xspace}
\newcommand{\sigpolyevala}{\ensuremath{\mathsf{\bar{s}_{\sigma1}}}\xspace}
\newcommand{\sigpolyevalb}{\ensuremath{\mathsf{\bar{s}_{\sigma2}}}\xspace}
\newcommand{\bctv}{\ensuremath{\mathsf{BCTV}}\xspace}
\newcommand{\PI}{\ensuremath{\mathsf{PI}}\xspace}
\newcommand{\PIb}{\ensuremath{\mathsf{PI_B}}\xspace}
\newcommand{\PIc}{\ensuremath{\mathsf{PI_C}}\xspace}
\newcommand{\dl}[1]{\ensuremath{\widehat{#1}}\xspace}
\newcommand{\obgen}{\ensuremath{\mathcal O}\xspace}
\newcommand{\PC}{\ensuremath{\mathscr{P}}\xspace}
\newcommand{\permscheme}{\ensuremath{\sigma_\mathscr{P}}\xspace}
\newcommand{\selleft}{\ensuremath{\mathbf{q_L}}\xspace}
\newcommand{\selright}{\ensuremath{\mathbf{q_R}}\xspace}
\newcommand{\selout}{\ensuremath{\mathbf{q_O}}\xspace}
\newcommand{\selmult}{\ensuremath{\mathbf{q_M}}\xspace}
\newcommand{\selconst}{\ensuremath{\mathbf{q_C}}\xspace}
\newcommand{\selectors}{\ensuremath{\mathcal{Q}}\xspace}
\newcommand{\lvar}{\ensuremath{\mathbf{a}}\xspace}
\newcommand{\vars}{\ensuremath{\mathcal{V}}\xspace}
\newcommand{\rvar}{\ensuremath{\mathbf{b}}\xspace}
\newcommand{\ovar}{\ensuremath{\mathbf{c}}\xspace}
\newcommand{\pubvars}{\ensuremath{\mathcal{I}}\xspace}
\newcommand{\assignment}{\ensuremath{\mathbf{x}}\xspace}
\newcommand{\constsystem}{\ensuremath{\mathscr{C}}\xspace}
\newcommand{\relof}[1]{\ensuremath{\rel_{#1}}\xspace}
\newcommand{\pubinppoly}{\ensuremath{\mathsf{PI}}\xspace}
\newcommand{\sumi}[1]{\sum_{i\in[#1]}}
\newcommand{\sumzertok}[1]{\sum_{#1=0}^{k}}
\newcommand{\sumpoly}[1]{\sum_{i=0}^{#1-1}}
\newcommand{\summ}[1]{\sum_{i\in[#1]}}
\newcommand{\sumj}[1]{\sum_{j\in[#1]}}
\newcommand{\innerprod}[2]{\langle#1,#2\rangle}
\newcommand{\ZeroH}{\ensuremath{Z_H} \xspace}
\newcommand{\lpoly}{\ensuremath{\mathsf{a}}\xspace}
\newcommand{\rpoly}{\ensuremath{\mathsf{b}}\xspace}
\newcommand{\opoly}{\ensuremath{\mathsf{c}}\xspace}
\newcommand{\idpermpoly}{\ensuremath{\mathsf{z}}\xspace}
\newcommand{\lagrangepoly}{\ensuremath{\mathsf{L}}\xspace}
\newcommand{\zeropoly}{\ensuremath{\mathsf{\ZeroH}}\xspace}
\newcommand{\selmultpoly}{\ensuremath{\mathsf{q_M}}\xspace}
\newcommand{\selleftpoly}{\ensuremath{\mathsf{q_L}}\xspace}
\newcommand{\selrightpoly}{\ensuremath{\mathsf{q_R}}\xspace}
\newcommand{\seloutpoly}{\ensuremath{\mathsf{q_O}}\xspace}
\newcommand{\selconstpoly}{\ensuremath{\mathsf{q_C}}\xspace}
\newcommand{\idcomm}{\ensuremath{[s_{\mathsf{ID1}}]_1}\xspace}
\newcommand{\sigcomma}{\ensuremath{[s_{\mathsf{\sigma1}}]_1}\xspace}
\newcommand{\sigcommb}{\ensuremath{[s_{\mathsf{\sigma2}}]_1}\xspace}
\newcommand{\sigcommc}{\ensuremath{[s_{\mathsf{\sigma3}}]_1}\xspace}
\newcommand{\selleftcomm}{\ensuremath{[q_\mathsf{L}]_1}\xspace}
\newcommand{\selrightcomm}{\ensuremath{[q_\mathsf{R}]_1}\xspace}
\newcommand{\seloutcomm}{\ensuremath{[q_\mathsf{O}]_1}\xspace}
\newcommand{\selconstcomm}{\ensuremath{[q_\mathsf{C}]_1}\xspace}
\newcommand{\selmultcomm}{\ensuremath{[q_\mathsf{M}]_1}\xspace}
\newcommand{\multlinecomment}[1]{\directlua{-- #1}}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{thm}[lemma]{Theorem}
\newtheorem{dfn}[lemma]{Definition}
\newtheorem{remark}[lemma]{Remark}
\newtheorem{claim}[lemma]{Claim}
\newtheorem{corollary}[lemma]{Corollary}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\R}{\mathcal{R}}
\newcommand{\crct}{\ensuremath{\mathsf{C}}\xspace}
\newcommand{\A}{\ensuremath{\mathcal{A}}\xspace}
%\newcommand{\G}{\mathcal{G}}
\newcommand{\Gr}{\mathbb{G}}
%\newcommand{\com}{\textsf{com}} Ariel defined equivalent that also works in math mode
\newcommand{\cgen}{\text{cgen}}
\newcommand{\poly}{\ensuremath{\mathsf{poly(\lambda)}}\xspace}
\newcommand{\snark}{\ensuremath{\mathsf{snark}}\xspace}
\newcommand{\grandprod}{\mathsf{prod}}
\newcommand{\perm}{\mathsf{S}}
%\newcommand{\open}{\mathsf{open}}
\newcommand{\update}{\mathsf{update}}
\newcommand{\Prove}{\mathcal{P}}
\newcommand{\Verify}{\mathcal{V}}
\newcommand{\Extract}{\mathcal{E}}
\newcommand{\Simulate}{\mathcal{S}}
\newcommand{\Unique}{\mathcal{U}}
\newcommand{\Rpoly}{\R{\poly}}
\newcommand{\Ppoly}{\Prove{\poly}}
\newcommand{\Vpoly}{\Verify{\poly}}
\newcommand{\Psnark}{\prv}%{\Prove{\snark}}
\newcommand{\Vsnark}{\ver}%{\Verify{\snark}}
\newcommand{\Rprod}{\R{\grandprod}}
\newcommand{\Pprod}{\Prove{\grandprod}}
\newcommand{\Vprod}{\Verify{\grandprod}}
\newcommand{\Rperm}{\R{\perm}}
\newcommand{\Pperm}{\Prove{\perm}}
\newcommand{\Vperm}{\Verify{\perm}}
% \newcommand{\zw}[1]{{\textcolor{magenta}{Zac:#1}}}
\newcommand{\ag}[1]{{\textcolor{blue}{\emph{Ariel:#1}}}}
\newcommand{\extprot}{\ensuremath{E_{\prot}}\xspace}
\newcommand{\transcript}{\ensuremath{\mathsf{transcript}}\xspace}
\newcommand{\extpc}{\ensuremath{E_{\PCscheme}}\xspace}
\newcommand{\advpc}{\ensuremath{\mathcal A_{\PCscheme}}\xspace}
\newcommand{\advprot}{\ensuremath{\mathcal A_{\prot}}\xspace}
\newcommand{\protmany}{\ensuremath{\prot_k}\xspace}
\usepackage{pifont}% http://ctan.org/pkg/pifont
\newcommand{\cmark}{\ding{51}}%
\newcommand{\xmark}{\ding{55}}%
\newcommand{\marlin}{\ensuremath{\mathsf{Marlin}}\xspace}
\newcommand{\fractal}{\ensuremath{\mathsf{Fractal}}\xspace}
% \newcommand{\Rsnark}{\R{\snark}}
\newcommand{\Rsnark}{\R}
\newcommand{\subvec}[1]{\ensuremath{#1|_{\subspace}}\xspace}
\newcommand{\restricttovec}[1]{\ensuremath{#1|_{\subgroup}}\xspace}
\newcommand{\isinvanishing}[1]{\ensuremath{\mathsf{IsInVanishing_{\subspace,#1}}}\xspace}
\newcommand{\batchedisinvanishing}[1]{\ensuremath{\mathsf{BatchedIsInVanishing_{\subspace,#1}}}\xspace}
\newcommand{\isconsistent}{\ensuremath{\mathsf{IsConsistent}}\xspace}
\newcommand{\isintable}{\ensuremath{\mathsf{IsInTable}}\xspace}
\newcommand{\lincheck}{\ensuremath{\mathsf {lincheck}}\xspace}
\newcommand{\accprot}{\ensuremath{\mathsf {accProt}}\xspace}
\newcommand{\isinvanishingtable}[1]{\ensuremath{\mathsf{IsInVanishingTable_{\subspace,#1}}}\xspace}
\newcommand{\isvanishingsubtable}[1]{\ensuremath{\mathsf{IsVanishingSubtable_{#1}}}\xspace}
\newcommand{\haslowerdegree}{\ensuremath{\mathsf{HasLowerDegree}}\xspace}
\newcommand{\haslowdegree}[1]{\ensuremath{\mathsf{HasLowDegree_{#1}}}\xspace}
\newcommand{\issubtable}[1]{\ensuremath{\mathsf{IsSubtable_{#1}}}\xspace}
\newcommand{\isinsubtable}[2]{\ensuremath{\mathsf{IsInSubtable_{#1,#2}}}\xspace}
\newcommand{\secbasezero}[1]{\ensuremath{\hat{\tau}_{#1}}\xspace}
\newcommand{\secbase}[1]{\ensuremath{\hat{\tau}_{#1}}\xspace}
\newcommand{\secbasereg}[1]{\ensuremath{\tau_{#1}}\xspace}
\newcommand{\secset}{\ensuremath{I}\xspace}
\newcommand{\pubbase}[1]{\ensuremath{\mu_{#1}}\xspace}
\newcommand{\subspace}{\ensuremath{\mathbb{H}}\xspace}
\newcommand{\subgroup}{\ensuremath{\mathbb{H}}\xspace}
\newcommand{\biggroup}{\ensuremath{\mathbb{V}}\xspace}
\newcommand{\subtable}{\ensuremath{T_0}\xspace}
\newcommand{\tablelang}{\ensuremath{\lang_T}\xspace}
\newcommand{\vanishingtablelang}{\ensuremath{\lang_{\subspace}}\xspace}
\newcommand{\nonorm}[1]{\ensuremath{\Gamma^T_{#1}}\xspace}
\newcommand{\unnorm}[2]{\ensuremath{\Gamma^{#1}_{#2}}\xspace}
\newcommand{\bigspacebase}{\ensuremath{\lambda}\xspace}
\newcommand{\bigspacegen}{\ensuremath{\mathsf{h}}\xspace}
\newcommand{\modvan}[1]{\ensuremath{\mathrm{mod\;}Z_{#1}}\xspace}
\newcommand{\extractevaltable}{\ensuremath{\mathsf{ExtractEvalTable}_{C,\tablegroup}}\xspace}
\newcommand{\witsize}{\ensuremath{n}\xspace}
\newcommand{\witruntime}{\ensuremath{\witsize\log\witsize}\xspace}
\newcommand{\tabsize}{\ensuremath{N}\xspace}
\newcommand{\tabruntime}{\ensuremath{\tabsize\log\tabsize}\xspace}
\newcommand{\tab}{\ensuremath{\mathfrak{t}}\xspace}
\renewcommand{\a}{\ensuremath{\mathsf{a}}\xspace}
\renewcommand{\b}{\ensuremath{\mathsf{b}_0}\xspace}
\renewcommand{\c}{\ensuremath{\mathsf{c}}\xspace}
\newcommand{\vc}{\ensuremath{\mathsf{c_v}}\xspace}
\renewcommand{\v}{\ensuremath{\mathsf{v}}\xspace}
\renewcommand{\r}{\ensuremath{\mathsf{r}}\xspace}
\newcommand{\f}{\ensuremath{\mathsf{f}}\xspace}
\renewcommand{\g}{\ensuremath{\mathsf{g}}\xspace}
\newcommand{\matrices}{\ensuremath{\F^{n\times n}}\xspace}
\newcommand{\ftwo}{\ensuremath{\mathsf{f}_2}\xspace}
\renewcommand{\p}{\ensuremath{\mathsf{p}}\xspace}
\newcommand{\q}{\ensuremath{\mathsf{q}}\xspace}
\newcommand{\qone}{\ensuremath{\mathsf{q_1}}\xspace}
\newcommand{\s}{\ensuremath{\mathsf{s}}\xspace}
\newcommand{\qa}{\ensuremath{\mathsf{q_a}}\xspace}
\newcommand{\qb}{\ensuremath{\mathsf{q_b}}\xspace}
\newcommand{\m}{\ensuremath{\mathsf{m}}\xspace}
\newcommand{\agam}{\ensuremath{a_\gamma}\xspace}
\newcommand{\gamproof}{\ensuremath{\mathsf{\pi_\gamma}}\xspace}
\newcommand{\zerproof}{\ensuremath{\mathsf{\a}_0}\xspace}
\newcommand{\bgam}{\ensuremath{b_\gamma}\xspace}
\newcommand{\bzergam}{\ensuremath{b_{0,\gamma}}\xspace}
\newcommand{\qbgam}{\ensuremath{Q_{b,\gamma}}\xspace}
\newcommand{\zgam}{\ensuremath{Z_{\bigspace,\gamma}}\xspace}
\newcommand{\betaa}{\ensuremath{\mathbf{\boldsymbol{\beta}}}\xspace}
\newcommand{\deltaa}{\ensuremath{\mathbf{\boldsymbol{\delta}}}\xspace}
\newcommand{\gammaa}{\ensuremath{\mathbf{\boldsymbol{\gamma}}}\xspace}
\newcommand{\witcom}{\ensuremath{\mathsf{W}}\xspace}
\newcommand{\instt}{\ensuremath{\Phi^*}\xspace}
\newcommand{\insttbase}{\ensuremath{\Phi}\xspace}
\newcommand{\pow}{\ensuremath{\mathsf{pow}}\xspace}
\newcommand{\eq}{\ensuremath{\mathsf{eq}}\xspace}
\newcommand{\FFT}{\ensuremath{\mathsf{FFT}}\xspace}
\newcommand{\fgam}{\ensuremath{f_{\gamma}}\xspace}
\newcommand{\pgam}{\ensuremath{P_{\gamma}}\xspace}
\newcommand{\supp}[1]{\ensuremath{\mathrm{supp}(#1)}\xspace}
\newcommand{\degoffset}{\ensuremath{\tabsize-1-(\witsize-2)}\xspace}
\newcommand{\modpoly}[1]{\ensuremath{\;\;\mod #1(X)}\xspace}
\newcommand{\coeff}[2]{\ensuremath{(#1)_{[#2]}}\xspace}
\newcommand{\kzg}[1]{\ensuremath{\mathsf{KZG}_{#1,\subgroup}}\xspace}
\newcommand{\accscheme}[2]{$(#1\mapsto #2)$-folding scheme\xspace}
\newcommand{\accrel}{\ensuremath{\rel_{\mathpgoth{acc}}}\xspace}
\newcommand{\relpair}{\ensuremath{\mathfrak{p}}\xspace}
\newcommand{\inststar}{\ensuremath{\inst^*}\xspace}
\newcommand{\witstar}{\ensuremath{\wit^*}\xspace}
\newcommand{\relpairstar}{\ensuremath{\relpair^*}\xspace}
\newcommand{\witt}{\ensuremath{\mathrm{w}}\xspace}
\newcommand{\nodelabel}{\ensuremath{\mathfrak{n}}\xspace}
\newcommand{\roundnum}{\ensuremath{\mathpgoth{k}}\xspace}
\newcommand{\manyvar}{\ensuremath{\mathfrak{J}}\xspace}
\newcommand{\nmin}{\ensuremath{[n]_0}\xspace}
\newcommand{\zfin}{\ensuremath{z_{\mathscr{final}}}\xspace}
\newcommand{\relapp}{\ensuremath{\rel_{app}}\xspace}
\newcommand{\relexec}{\ensuremath{\rel_{\mathrm{exec}}}\xspace}
\newcommand{\relF}{\ensuremath{\rel_F}\xspace}
\newcommand{\init}{\ensuremath{\mathsf{init}}\xspace}
\newcommand{\add}{\ensuremath{\mathsf{add}}\xspace}
\newcommand{\del}{\ensuremath{\mathsf{del}}\xspace}
\renewcommand{\read}{\ensuremath{\mathsf{read}}\xspace}
\newcommand{\countrange}{\ensuremath{[M]}\xspace}
\newcommand{\true}{\ensuremath{\mathsf{true}}\xspace}
\newcommand{\false}{\ensuremath{\mathsf{false}}\xspace}
\newcommand{\finstate}{\ensuremath{V}\xspace}
\newcommand{\ops}{\ensuremath{\mathcal{O}}\xspace}
\newcommand{\op}{\ensuremath{\mathscr{op}}\xspace}
\newcommand{\instapp}{\ensuremath{\mathfrak{x}}\xspace}
\newcommand{\witapp}{\ensuremath{\mathfrak{w}}\xspace}
\newcommand{\instnoops}{\ensuremath{\mathbf{x}}\xspace}
\renewcommand{\path}{\ensuremath{\mathbf{p}}\xspace}
\renewcommand{\root}{\ensuremath{\mathbf{r}}\xspace}
\newcommand{\predinst}{\ensuremath{\mathpgoth{f}}\xspace}
\renewcommand{\empty}{\ensuremath{g_{\mathscr{empty}}}\xspace}
\newcommand{\funcs}{\ensuremath{\mathsf{F}}\xspace}
\newcommand{\ztafuncs}{\ensuremath{\mathcal{D}}\xspace}
% \newcommand{\instF}{\ensuremath{\mathrm{x}}\xspace}
% \newcommand{\witF}{\ensuremath{\mathrm{w}}\xspace}
\newcommand{\instexec}{\ensuremath{\mathrm{x_{exec}}}\xspace}
\newcommand{\witexec}{\ensuremath{\mathrm{w_{exec}}}\xspace}
\newcommand{\witf}{\ensuremath{\mathsf{w_f}}\xspace}
\newcommand{\sel}{\ensuremath{\mathsf{q}}\xspace}
% \newcommand{\perm}{\ensuremath{\mathsf{s}}\xspace}
\newcommand{\args}{\ensuremath{\mathsf{args}}\xspace}
\newcommand{\callnum}{\ensuremath{\mathsf{c}}\xspace}
\newcommand{\recset}{\ensuremath{\mathsf{V}}\xspace}
\newcommand{\tree}{\ensuremath{\mathsf{T}}\xspace}
\newcommand{\node}{\ensuremath{\mathsf{n}}\xspace}
\newcommand{\incsum}{\ensuremath{\mathscr{s}}\xspace}
\newcommand{\inchash}{\ensuremath{\mathscr{h}}\xspace}
\newcommand{\shlomomath}[1]{\ensuremath{\text{\usefont{U}{BOONDOX-cal}{m}{n}#1}}\xspace}
\newcommand{\calligmath}[1]{\ensuremath{\text{\calligra{#1}}}\xspace}
\newcommand{\ext}{\ensuremath{\mathbf{E}}\xspace}
\newcommand{\finpred}{\shlomomath{f}}
\newcommand{\zksnark}{zk-SNARK\;}
\newcommand{\n}{\shlomomath{n}}
\newcommand{\dimK}{\calligmath{k}}
\newcommand{\M}{\calligmath{M}}
\newcommand{\cmsetup}{\ensuremath{r_\cm}\xspace}
\newcommand{\relrcg}{\ensuremath{\rel_{F,\finpred}}\xspace}
\newcommand{\relzer}{\ensuremath{\rel_{0}}\xspace}
\newcommand{\relrcgstar}{\ensuremath{\rel_{F^*,\finpred^*}}\xspace}
\begin{document}
\maketitle
\begin{abstract}
The goal of this note is to describe and analyze a simplified variant of the zk-SNARK construction used in the Aztec protocol.
Taking inspiration from the popular notion of Incrementally Verifiable Computation\cite{ivc} (IVC)
we define a related notion of \emph{Repeated Computation with Global state} (RCG). As opposed to IVC, in RCG we assume the computation terminates before proving starts, and in addition to the local transitions some global consistency checks of the whole computation are allowed. However, we require the space efficiency of the prover to be close to that of an IVC prover not required to prove this global consistency.
We show how RCG is useful for designing a proof system for a private smart contract system like Aztec.
\end{abstract}
\section{Introduction}
Incrementally Verifiable Computation (IVC) \cite{ivc} and its generalization to Proof Carrying Data (PCD) \cite{pcd} are useful tools for constructing space-efficient SNARK provers\cite{BCCT}.
In IVC and PCD we always have an acyclic computation.
However code written in almost any programming language \emph{is} cyclic in the sense of often relying on internal calls --
we start from a function $A$, execute some commands, go into a function $B$, execute its commands, and go back to $A$.
When making a SNARK proof of such an execution, we typically linearize or ``flatten'' the cycle stemming from the internal call, in one of the following two ways.
\begin{enumerate}
\item The monolithic circuit approach: We ``inline'' all internal calls (as well as loops) into one long program without jumps.
\item The VM approach: Assume the code of $A,B$ is written in some prespecified instruction set. The program is executed by initially writing the code of $A,B$ into memory, and loading from memory and executing at each step the appropriate instruction according to a program counter. For example, the call to $B$ is made by changing the counter to that of the first instruction of $B$. To prove correctness of the execution, all we need is a SNARK for proving correctness of a certain number of steps of a machine with this instruction set, and some initial memory state.
\end{enumerate}
The second approach is more generic, while the first offers more room for optimization, so we'd want to use it in resource-constrained settings, e.g. client-side proving.
However, what if we're in a situation where $A$ and $B$ have already been ``SNARKified'' separately?
Namely, there is a verification key attached to each one, and we are expected to use these keys specifically.
This is what happens in the Aztec system.
\paragraph{The Aztec private contract system}
Similar to Ethereum we have contracts, and the contracts have functions.\footnote{Detailed documentation of the Aztec protocol can be found \href{https://docs.aztec.network/}{here}.}
A function in a contract can internally call a different function in the same or a different contract. Moreover, while writing the code for the different functions and compiling them to circuits,
we can't predict what function will be internally called by a given contract function. For example, a ``send token'' function could have an internal call to an ``authorize'' function.
But the call to ``authorize'' need not be tied to a specific implementation and consequently, to a specific verification key -- as different token holders are
allowed to set their own ``authorize'' function.
The goal of the Aztec system is to enable constructing zero-knowledge proofs of such contract function executions.
For this purpose, a contract is deployed by
\begin{enumerate}
\item Computing a verification key for each function of the contract.
\item Adding a commitment to the verification keys of the contract in a global ``function tree''. More accurately, a leaf of this tree is a hash of the
contract address with a Merkle root of a tree whose leaves are the verification keys of that contract's functions.
\end{enumerate}
\paragraph{Dealing with global state}
The global state of the Aztec system is described by a set of notes, which are simply values in a field \F.
% \Patrick{What does it mean for a contract to "have" a set of notes? Perhaps mention instead that there is a global state consisting of notes that can
% be modified by any contract}
Each note belongs to a certain contract. While running, a function can read, add or delete notes belonging to its contract.
% \Patrick{Same remark for "belonging"}
We can thus think of the notes as global variables shared between the different functions.
Assume all functions in this system return \accept or \rej. (We can always move the output into the arguments if a function is not of this form.)
Here's a natural way to prove the mentioned execution: Put the arguments to $B$ in the public inputs of both the circuits of $A$ and $B$.
Verify the proofs $\prf_A,\prf_B$ for $A,B$; and check via the public inputs the same value was used in both proofs for the arguments of $B$.
This however, doesn't yet deal with the notes. During execution, note operations happened in a certain order.
We can thus assign a \emph{counter} equal to one for the first operation
% \Patrick{equal to one for the first operation},
and increment the counter with each operation.
We then need to check, for example, that if a note was read with a certain counter, it was indeed added
with a smaller counter.
We can include a description of the note operations performed by a function in the inputs of its circuit. This description will contain the operation type (\add, \del, \read), the note value, and the counter.
The issue is, what if $A$ is reading a note that was added in the internal call to $B$?
Checking the existence of an $\add$ operation with smaller counter requires a constraint \emph{between} the inputs of both circuits. And for an execution consisting of more calls, this constraint can involve any two circuits in the call tree.
% Describing the issue more generally, since we are forced to prove things in a different order than they were executed, we must enforce a global consistency between the witnesses of all iterations.
This brings us to the notion of \emph{Repeated Computation with Global state} (RCG). In RCG we have a transition predicate taking us from one state to the next. We wish to prove we know a sequence of witnesses taking us from a legal initial state to a certain publicly known final state. This might remind the reader of the popular notion of \emph{incrementally verifiable computation} (IVC). There are two differences.
\begin{itemize}
\item
In RCG we are not interested in ``incremental'' proofs of one step, only in proofs for a whole
sequence of transitions ending in a desired final state.
\item In RCG we also have a \emph{final predicate} checking a joint consistency condition between witnesses from all iterations.
\end{itemize}
One could ask, why not \emph{only} have a final predicate that includes the transition checks? In other words, a monolithic circuit for the whole computation.
The point is that in our use case the final predicate is applied to small parts of each iteration's witness -- namely the note operations. As a result, the decomposition into a transition and final predicate can facilitate obtaining better prover efficiency, especially in terms of prover space.
Roughly, we'll require space sufficient for storing the inputs to the final predicate, in addition to the space required to prove a single transition.
\subsection{Related work}
Recent work \cite{moonmoon, mangrove} as well as ongoing work \cite{jenstalk} uses folding schemes \cite{othernova,nova} to break up proving statements about large computation into smaller statements.
The objective being reducing prover memory and/or improving prover parallelism.
These works have not formally defined a notion like RCG, and rather use the IVC terminology. We believe the RCG framework may be better suited for
capturing the properties of these constructions. In terms of the concrete constructions, there are overlaps with this work, notably a two-pass over
part of the witness to generate a random challenge. As alluded to earlier,
one distinction is that these works start with a computation that is already linear, while here we start with cyclic computation and must ``compile'' it into a ``linear'' statement.
\subsection{Overview of the paper}
In Section \ref{sec:Preliminaries}, we go over terminology and preliminaries.
Notably, in Section \ref{subsec:zta} we introduce the \emph{Zero-Testing Assumption} from \cite{novarecursive} that enables us to
avoid heuristic assumptions as commonly happens in IVC papers due to the need of instantiating the random oracle.
In Section \ref{sec:model}, we introduce our execution model involving record operations and execution trees.
In Section \ref{sec:RCG}, we introduce the notion of Repeated Computation with Global state, and show how to reduce computations in the model of Section \ref{sec:model} to RCG.
In Section \ref{sec:Fstar}, we show how ``log-derivative methods'' \cite{bplusplus,logup} can capture global consistency of operations
as defined in previous sections.
In Section \ref{sec:folding}, we show how the \protogal folding scheme \cite{protogalaxy} can be proven secure under the ZTA (without
the need of a random oracle).
In Section \ref{sec:FtoFprime}, we present our main zk-SNARK construction. The main ingredient is a ``folding to IVC'' reduction similar to the ones in
\cite{othernova,nova}.
In Section \ref{sec:general}, we outline how RCG can be implemented for a more general set of functions.
A reader wanting to get a feeling of the main construction ideas might want to focus first on Sections \ref{sec:model}--\ref{sec:Fstar}.
\section{Preliminaries}\label{sec:Preliminaries}
\subsection{Terminology and Conventions}\label{sec:terminology}
We assume all algorithms described receive as an implicit parameter the security parameter $\lambda$.
Similarly, all integer parameters in the paper are implicitly functions of $\lambda$, and of size at most \poly unless explicitly stated otherwise.
Whenever we use the term \emph{efficient}, we mean an algorithm running in time \poly. Furthermore,
we assume an \emph{object generator} \obgen that is run with input $\lambda$ before all protocols, and returns all fields and groups used. Specifically, in our protocol $\obgen(\lambda) = (\F, \G,g,\cmsetup)$ where
\begin{itemize}
\item \F is a field of \textbf{prime} size $r = \lambda^{\omega(1)}$
.
\item $\G$ is a group of size $r$.
\item $g$ is a uniformly chosen generator of \G.
\item $\cmsetup$ is a uniformly chosen key for a collision-resistant homomorphic commitment scheme $\cm:\F^M \to \G$.
\end{itemize}
We usually let the $\lambda$ parameter be implicit, e.g. write \F instead of $\F(\lambda)$.
We denote by \polysofdeg{d} the set of univariate polynomials over \F of degree smaller than $d$.
We write \G additively.
\emph{All probabilistic statements in the paper are additionally over the randomness of \obgen.}
% We use the notations $\enc1{x}\defeq x\cdot g_1$ and $\enc2{x}\defeq x\cdot g_2$.
We often denote by $[n]$ the integers \set{1,\ldots,n}.
% For example, when we refer below to the field $\F$, it is in fact a function $\F(\lambda)$ of $\lambda$, and part of
% the output of $\obgen(\lambda)$.
We use the acronym e.w.p. for ``except with probability''; i.e. e.w.p. $\gamma$ means with probability \emph{at least} $1-\gamma$.
% \paragraph{Representing \G}
% Assume an injective function $R:\G \to \F^2$.
% Whenever we discuss $a\in \G$ we assume it is represented as $R(a)$.
% When we say for $b\in \F^2$ that $b\in \G$ we mean that there exists $a\in \G$ with $R(a)=b$.
\subsection{Zero-Testing Assumption}\label{subsec:zta}
Throughout this paper, we'll make use of a variant of the \emph{Zero-Testing Assumption (ZTA)} from \cite{novarecursive} given in Definition \ref{dfn:ZTA} as well as its generalization, the \emph{$t$-variate Zero-Testing Assumption}, we introduce in Definition \ref{dfn:multiZTA}.
\begin{dfn}\label{dfn:ZTA}
Fix $\cm:\F^M\to K$, hash function $\hash:\B^*\to \F$, and integer $d$. Fix the family of functions \ztafuncs.
We say the tuple $(D,x,\tau)$ is a \emph{degree $d$-relation for $(\ztafuncs,\hash,\cm)$} if
\begin{enumerate}
\item $D\in \ztafuncs$.
\item $f(X)\defeq D(x,\tau)$ is a non-zero element of \polysofdegeq{d}.
\item Setting $z\defeq \hash(\cm(x),\tau)$, we have $f(z)=0$.
\end{enumerate}
The Zero-Testing Assumption (ZTA) for $(\ztafuncs,\hash,\cm,d)$ states that for any efficient \adv, the probability that
\adv outputs a degree $d$-relation for $(\ztafuncs,\hash,\cm)$ is \negl.
\end{dfn}
\begin{dfn}[$t$-variate ZTA]\label{dfn:multiZTA}
Fix $\cm:\F^M\to K$, hash function $\hash:\B^*\to \F$, and integer $d$. Fix the family of functions \ztafuncs.
We say the tuple $(D,x,\tau)$ is a \emph{$(t,d)$-relation for $(\ztafuncs,\hash,\cm)$} if
\begin{enumerate}
\item $D\in \ztafuncs$.
\item $f(X_1,\ldots,X_t)\defeq D(x,\tau)$ is a non-zero element of $\F_{\leq d}[X_1,\ldots,X_t]$.
\item Setting $z_i\defeq \hash(\cm(x),\tau,i)$ for $i\in[t]$, we have $f(z_1,\ldots,z_t)=0$.
\end{enumerate}
The $t$-variate Zero-Testing Assumption (ZTA) for $(\ztafuncs,\hash,\cm,d)$ states that for any efficient \adv, the probability that
\adv outputs a $(t,d)$-relation for $(\ztafuncs,\hash,\cm)$ is \negl.
\end{dfn}
We prove that the univariate ZTA implies the $t$-variate ZTA.
\begin{lemma}
Fix a family of functions \ztafuncs whose outputs are polynomials in $\F_{\leq d}[X_1,\ldots,X_t]$. Let $\ztafuncs_t$ be a family of functions to be defined in the proof. Then the univariate ZTA for $(\ztafuncs_t,\hash,\cm,d)$ implies the $t$-variate ZTA for $(\ztafuncs,\hash,\cm,d)$ and $t=\poly$.
\end{lemma}
\begin{proof}
Let \adv be an adversary against the $t$-variate ZTA that outputs the $(t,d)$-relation $(D,x,\tau)$ for $(\ztafuncs,\hash,\cm)$. We construct the adversary \advprime against the univariate ZTA that outputs a degree-$d$ relation for $(\ztafuncs_t,\hash,\cm)$, where $\ztafuncs_t$ will be the union of all the functions $D_i$ defined in the following.
Write $f(X_1,\ldots,X_t)\defeq D(x,\tau)$ as a polynomial in $X_t$ over $\F[X_1,\ldots,X_{t-1}]$:
\[f(X_t)=\sum_{i=0}^d C_i(X_1,\ldots,X_{t-1}) X_t^i.\]
For $i\in[t]$, denote $z_i\defeq\hash(\cm(x),\tau,i)$. Suppose first that $f(z_1,\ldots,z_{t-1},X_t)\not\equiv 0$. Then \advprime can output the degree-$d$ relation $(D_t,x,\tau_t)$, where $D_t$ is the function that computes $f_t(X)\defeq f(z_1,\ldots,z_{t-1},X)$ given $x$ and $\tau_t\defeq(\tau,t)$, deriving $z_1,\ldots,z_{t-1}$ via \hash as part of its operation. Note that $f_t(z_t)=0$ with $z_t=\hash(\cm(x),\tau_t)$.
Otherwise, there is a non-zero polynomial $C_i\in\F_{\leq d}[X_1,\ldots,X_{t-1}]$ which satisfies $C_i(z_1,\ldots,z_{t-1})=0$. If $C_i(z_1,\ldots,z_{t-2},X_{t-1})\not\equiv 0$, \advprime can output the degree-$d$ relation $(D_{t-1},x,\tau_{t-1})$, where $D_{t-1}$ is the function that computes $f_{t-1}(X)\defeq C_i(z_1,\ldots,z_{t-2},X)$ given $x$ and $\tau_{t-1}\defeq(\tau,t-1)$.
Recursively define degree-$d$ relations $(D_i,x,\tau_i)$ until $i=1$ and we have a univariate non-zero polynomial $C_j'\in\F_{\leq d}[X_1]$ with $C_j'(z_1)=0$. In this base case, \advprime can output the degree-$d$ relation $(D_1,x,\tau_1)$, where $D_1$ is the function that computes $f_1(X)\defeq C_j'(X)$ given $x$ and $\tau_1\defeq(\tau,1)$, finishing the proof.
\end{proof}
\section{The execution model}\label{sec:model}
We present a formal framework for describing function executions enabling both internal function calls and global state.
We begin in Section \ref{sec:exec_model:record_ops} by introducing \emph{record operations} which is our specific notion of operating on a global state.
% The global state consists of values, simply referred to as \emph{values}, that can be added, read or deleted by the contract functions; and that a
% function can call other functions.
% As the called functions modify the global state, for instance -- delete a note that was added during the execution, an ordering on
% the operations on the global state is necessary to guarantee their consistency (e.g.,\ guarantee that a note can only be deleted if it were
% first added).
Record operations keep track of the computation steps at which records (roughly corresponding to notes in the introduction) were added, read and deleted.
We then define what it means for a set of such operations to be \emph{consistent}. For example, we want to enforce that a record can be deleted only if it was first added.
The eventual goal is to prove that a certain set of records is the output of a function execution (where that execution includes the function's internal calls).
The proof should not reveal any information about which function was executed, as long as it belongs to a pre-defined set of legal functions,
or about its arguments.
To do so, it is sufficient to prove knowledge of an execution tree with the initial function at the root, the functions it calls at its children nodes and so forth.
% The execution of the initial function is valid if the function at each node accepts on its arguments.
Section \ref{sec:exec_model:relation} defines a relation which formally captures what it means for an individual function to accept on its arguments,
and Section \ref{sec:validexec} formally defines such execution trees.
\begin{remark}
For simplicity, and in contrast to the introduction, we don't explicitly discuss contracts. We only model functions operating on a shared global state.
As in Aztec each function can only operate on notes of its contract, this corresponds to a system with one contract. Capturing the general system mainly requires modelling the restriction that a function is only operating on the subset of notes belonging to its contract.
\end{remark}
\subsection{Record operations}
\label{sec:exec_model:record_ops}
\emph{Records} are pairs $(\v,\c)$, where $\v\in \F$ is the \emph{value}, and $\c\in \countrange$ is a \emph{counter}.
A \emph{record operation} has one of the following forms:
\begin{itemize}
\item $(\add,\v,\c)$,
\item $(\del,\v,\vc,\c)$,
\item $(\read,\v,\vc,\c)$.
\end{itemize}
Here $\v\in \F$ is a value and $\c,\vc \in \countrange$ are counters.
$\c$ is interpreted as the counter of the current operation.
$\vc$ is interpreted as the counter of the operation where
the value was added in the case of a \read or \del operation.
We say a sequence \ops of record operations of size $M$ is \emph{consistent} if
\begin{enumerate}
\item The counter values $\c$ are distinct in all elements of \ops, and as a set equal to \countrange.
\item The $\vc$ fields in all $\del$ operations $(\del,\v,\vc,\c)\in \ops$ are distinct.
\item If $(\del,\v,\vc,\c)\in \ops$, then $\vc<\c$ and $(\add,\v,\vc)\in \ops$.
\item If $(\read,\v,\vc,\c)\in \ops$, then $\vc<\c$ and $(\add,\v,\vc)\in \ops$.
\end{enumerate}
Let \recset be a set of records.
We say $\ops$ \emph{has output \recset} if:
\begin{itemize}
\item $\ops$ is consistent.
\item $\recset=\set{(\v,\c) \mid (\add,\v,\c)\in \ops \land \forall \c'\in \countrange,(\del,\v,\c,\c')\notin \ops}$. In words,
\recset is the set of values that were added and not deleted.
\end{itemize}
\subsection{The Plonkish relation}
\label{sec:exec_model:relation}
Now we introduce a relation \relapp describing the individual function executions tailored to make it convenient to later discuss an execution of a \emph{sequence} of functions calling each other.
The executed function is represented in the instance by a single group element \f. In the terminology of \cite{plonk}, \f is a commitment to the permutation and selector values of a specific \plonk circuit. In particular, \relapp is a ``universal'' Plonkish relation where the circuit is not fixed but chosen in the instance.
% Additionally, the instance contains a group element \f representing, in the terminology of \cite{plonk} functions are represented by commitments which consist of a single group element.}
Additionally, the instance adheres to a form containing both the record operations and the details of the inner calls of the individual function execution.
We stress however, that the \emph{interpretation} of these values as record operations and inner calls, only happens in the next section when we discuss valid executions trees;
and doesn't manifest in the definition of \relapp.
% We stress that these values will be interpreted as record operations and internal only in the next section when we discuss valid executions.
Some choices of constants -- like \args being of size four -- are arbitrary.
We fix a polynomial $G:\F^8\to \F$, and integers $N,\n$ that are implicit parameters in the following definition of relation \relapp.
\relapp consists of all pairs $(\instapp, \witapp)$ having the form
\begin{itemize}
\item
$\instapp= (\f,\args,\callnum, \f_1,\args_1, \f_2,\args_2,\ops)$
where $\f,\f_1,\f_2 \in \G,\args\in \F^4,\callnum\in \set{0,1,2}$;
\item $\witapp=(\witf,\wit)$
where
\begin{itemize}
\item
$\witf=(\perm_1,\ldots,\perm_4,\sel_1,\ldots,\sel_4)$,where $\perm_j \in [|\instapp|+N]^{\n},\sel_j \in \F^\n$ for each $j\in [4]$
\item $\wit\in \F^N$
\end{itemize}
\end{itemize}
such that
\begin{enumerate}
\item Setting $x=(\instapp,\wit)$, for all $i\in [\n]$
\[G(\sel_{1,i},\ldots,\sel_{4,i},x_{\perm_{1,i}},\ldots,x_{\perm_{4,i}})=0.\]
\item $\f=\cm(\witf)$.
\end{enumerate}
\subsection{Valid execution trees}\label{sec:validexec}
By an \emph{execution tree of length $n$} we mean a binary tree \tree with $n$ vertices, whose nodes are
labeled by pairs $(\instapp,\witapp)$.
Let \funcs be a set of elements of \G.
% \Patrick{Suggestion: This set represent the set of all contract-function commitments.}
Given such \tree we say it is a \emph{valid execution of length $n$ with function set \funcs and output \recset} if
\begin{enumerate}
\item For each $\node\in\tree$, its label $(\instapp,\witapp)$ is in \relapp.
\item For each $\node\in \tree$, let $(\instapp,\witapp)$ be its label. Let
$\instapp= (\f,\args,\callnum, \f_1,\args_1, \f_2,\args_2,\ops)$. Then
\begin{itemize}
\item $\f\in \funcs$.
\item The number of its children is \callnum.
\item For $i\in [\callnum]$, let $(\f^i,\args^i,\callnum^i, \f^i_1,\args^i_1, \f^i_2,\args^i_2,\ops^i)$ denote the first component of the label of $\node$'s $i$-th child. Then $\f_i=\f^i$ and $\args_i=\args^i$.
\item Let \ops be the multi-set union of $\instapp.\ops$ over all nodes' labels $(\instapp,\witapp)$. Then \ops has output \recset.
\end{itemize}
\end{enumerate}
Given a set of group elements \funcs, say it has \emph{Merkle root \root} if \root is the root of a Merkle tree with the elements of \funcs at the leaves using some pre-determined encoding.
We define a relation \relexec capturing knowledge of an execution of bounded length with a certain output set of records.
$\relexec$ consists of the pairs $(\instexec,\witexec)$
of the form
\begin{itemize}
\item $\instexec=(\root,C,\recset)$,
\item $\witexec=(n,\tree)$,
\end{itemize}
such that $n\leq C$, and \tree is a valid execution tree of length $n$ with function set \funcs having Merkle root \root, and output set \recset.
\section{Repeated Computation with Global state}\label{sec:RCG}
Motivated by space-efficient proofs for \relexec, we introduce the notion of \emph{Repeated Computation with
Global state} (RCG).
RCGs enable us to deal separately with the local consistency of iterative steps of a transition function,
and over-all consistency of a global state consisting of a part of each iteration's witness.
We first define the general notion, and then in Section \ref{sec:exec->RFC} show how to capture valid execution trees with it.
\paragraph{Defining RCG relations}
An RCG relation is defined by a pair of functions $(F,\finpred)$.
We call $F(Z,W,Z^*,S)\to \set{\accept,\rej}$ the \emph{transition predicate}, and $\finpred(Z,S_1,\ldots,S_n,\recset)\to \set{\accept,\rej}$ the \emph{final predicate}.
We informally think of
\begin{itemize}
\item $Z$ as the public input and $W$ as the private input of $F$.
\item $Z^*$ as the output of $F$ (although the actual output is \set{\accept,\rej}).
\item $S$ as the part of the private input that will be used in the final predicate.
\end{itemize}
\noindent
\emph{The relation $\relrcg$} is the set of pairs $(\inpF,\witF)$ with
\begin{itemize}
\item $\inpF=(\zfin,C,\recset)$,
\item $\witF=(n,z=(z_0,\ldots,z_n),w=(w_1,\ldots,w_n),s=(s_1,\ldots,s_n))$
\end{itemize}
such that
\begin{enumerate}
\item $z_0.\init = \true$.
% \Patrick{You are here tacitly assuming (and requiring) structure on $z,$ namely that it is a tuple with one component that is a boolean
% value.}
\item $z_n=\zfin$.
\item $n\leq C$.
\item For each $i\in [n]$, $F(z_{i-1},w_i,z_i,s_i)=\accept$.
\item $\finpred(z_n,s_1,\ldots,s_n,\recset)=\accept$.
\end{enumerate}
We say a \zksnark for \relrcg is \emph{space-efficient} if, given $s$ and streaming access
to $z$ and $w$, \prv requires space $O(|F|+|s|+\lambda \log n)$.
Here $|F|$ is defined as $\M+n'$ where $f:\F^\M\to {\F^{n'}}$ is the \protogal constraint function representing $F$ (see Section \ref{sec:folding}).
\subsection{Valid executions as RCGs}\label{sec:exec->RFC}
We define a specific RCG relation \relrcg capturing valid execution trees as defined in Section \ref{sec:validexec}.
Loosely speaking, the transition function $F$ will update a call stack of functions yet to be executed, and execute the function that is
at the top of the stack.
The final predicate \finpred will check the union of record operations from all iterations is consistent.\\
\noindent
More precisely, define the function $F(Z,W,Z^*,S)\to \set{\accept,\rej}$ as follows.
\begin{itemize}
\item $Z=(g,\root,\init)$ where $g$ is a stack of elements of the form $(\f,\args)$, \root is a root of a Merkle tree, and \init is a boolean.
\item $Z^*=(g^*,\root^*,\init^*)$ has the same form.
\item $W=(\path,\instnoops,\witapp)$.
\item $S$ is a set of record operations.
\end{itemize}
\noindent Under this notation,
$F(Z,W,Z^*,S)=\accept$ if and only if
\begin{enumerate}
\item If $\init=\true$, $g$ contains exactly one element.
\item Setting $\instapp=(\instnoops,S)$, we have $(\instapp,\witapp)\in \relapp$.
\item Denoting $g[0]=(\f,\args)$, we have $\f=\instnoops.\f$ and $\args=\instnoops.\args$.
\item \path is a Merkle path from \f to \root.
\item $\root=\root^*$.
\item $g^*$ is the result of popping $(\f,\args)$ from $g$ and then pushing the $\instapp.\callnum$ elements
$(\instapp.\f_i,\instapp.\args_i)$ for $i\in [\instapp.\callnum]$.
\end{enumerate}
Denote by \empty the empty stack.
We define $\finpred(z_n,s_1,\ldots,s_n,\recset)$ to output \accept if and only if
\begin{enumerate}
\item $z_n.g=\empty$,
\item Defining \ops as the multi-set union of $s_1,\ldots,s_n$, it is a well-formed set of record operations with output \recset.
\end{enumerate}
We show that proving knowledge of a witness for an instance of \relexec can be reduced to proving knowledge of a witness for an instance of
\relrcg.
\begin{lemma}\label{lem:execasRCG}
There is an efficiently computable and efficiently invertible map $\varphi$ such that the following holds.
Let \funcs be a set of function commitments with Merkle root \root. Fix positive integers $n,C$ with $n\leq C$.
Define $\zfin=(\empty,\root,\false)$. Let \tree be an execution tree of length $n$.
Then $((\root,C,\recset),(n,\tree))\in \relexec$ if and only if $((\zfin,C,\recset),\varphi(n,\tree))\in \relrcg$.
\end{lemma}
\begin{proof}
We describe the operation of $\varphi$.
Given \tree of length $n$, let $(\instapp_1,\witapp_1),\ldots,(\instapp_n,\witapp_n)$ be the labels of its nodes according to
DFS order.
Define a sequence of stacks $g_0,\ldots,g_n$ according to the sequence of labels.
Namely, $g_0$ is the stack containing only $(\instapp_1.\f,\instapp_1.\args)$. And for each $i\in [n]$, $g_i$ is
the stack obtained by popping $g_{i-1}[0]$ and pushing $(\instapp_i.\f_j,\instapp_i.\args_j)$ for $j\in [\instapp_i.\callnum]$.
Now, define $z_0=(g_0,\root,\true)$ and for each $i\in [n]$, $z_i=(g_i,\root,\false)$.
To proceed we need to refer to the record operations in each instance separately.
For this purpose, for each $i\in [n]$ denote $\instapp_i=(\instnoops_i,\ops_i)$.
For each $i\in [n]$, let $\path_i$ be the path from $\instapp_i.\f$ to \root.
Define for each $i\in [n]$, $w_i=(\path_i,\instnoops_i,\witapp_i)$, $s_i=\ops_i$.
Finally set $z=(z_0,\ldots,z_n),w=(w_1,\ldots,w_n),s=(s_1,\ldots,s_n)$
and $\varphi(n,\tree)=(n,z,w,s)$. Given this definition of $\varphi$, the statement of the lemma is straightforward to check.
\end{proof}
\section{Removing the global state via rational identities}\label{sec:Fstar}
We give rational identities which are equivalent to the consistency of record operations as formally defined
in Section \ref{sec:exec_model:record_ops}.
They arise from ideas similar to those used in ``log-derivative lookups'' \cite{bplusplus,logup}.
Using these identities, we then define a new RCG relation \relrcgstar capturing valid execution trees, i.e., \relexec. The advantage of \relrcgstar over \relrcg from Section \ref{sec:exec->RFC} is that the final predicate is ``trivial'' in the sense of only depending on the output of the final iteration.
As we'll see in Section \ref{sec:FtoFprime}, this makes constructing a zk-SNARK for it more convenient.
% \paragraph{Rational Identities}
% Following work on ``log-derivative lookup'' \cite{bplusplus,logup}, we characterize the validity of record operations via rational identities.
\begin{claim}\label{clm:reducetologder}
Assume $\F$ has characteristic larger than $M+1$.
Let \recset be a set of records and $\ops=\sett{(\op_i,\v_i,\vc_i,\c_i)}{i\in \countrange}$ be a set of record operations (defining $\vc_i=0$ when $\op_i=\add$) with $\vc_i<\c_i$ for all $i\in \countrange$.