-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_TSA.py
349 lines (311 loc) · 15.2 KB
/
train_TSA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# -*- coding: utf-8 -*
import random
import time
import warnings
import sys
import argparse
import copy
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
from torch.optim import SGD
import torch.utils.data
from torch.utils.data import DataLoader
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torch.nn.functional as F
import os.path as osp
import gc
from network import ImageClassifier
import backbone as BackboneNetwork
from utils import ContinuousDataloader
from transforms import ResizeImage
from lr_scheduler import LrScheduler
from data_list_index import ImageList
from Loss import *
def get_current_time():
time_stamp = time.time()
local_time = time.localtime(time_stamp)
str_time = time.strftime('%Y-%m-%d_%H-%M-%S', local_time)
return str_time
def main(args: argparse.Namespace, config):
torch.multiprocessing.set_sharing_strategy('file_system')
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = True
# load data
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
if args.dset == "visda":
train_transform = transforms.Compose([
ResizeImage(256),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
else:
train_transform = transforms.Compose([
ResizeImage(256),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
val_tranform = transforms.Compose([
ResizeImage(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize])
train_source_dataset = ImageList(open(args.s_dset_path).readlines(), transform=train_transform)
train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=True)
if args.dset == "visda":
memory_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=64, drop_last=False)
else:
memory_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.workers, drop_last=False)
train_target_dataset = ImageList(open(args.t_dset_path).readlines(), transform=train_transform)
train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, drop_last=True)
val_dataset = ImageList(open(args.t_dset_path).readlines(), transform=val_tranform)
if args.dset == "visda":
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=64)
else:
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
test_loader = val_loader
train_source_iter = ContinuousDataloader(train_source_loader)
train_target_iter = ContinuousDataloader(train_target_loader)
s_len = train_source_dataset.__len__()
t_len = val_dataset.__len__()
# load model
print("=> using pre-trained model '{}'".format(args.arch))
backbone = BackboneNetwork.__dict__[args.arch](pretrained=True)
if args.dset == "office":
num_classes = 31
elif args.dset == "office-home":
num_classes = 65
elif args.dset == "visda":
num_classes = 12
classifier = ImageClassifier(backbone, num_classes).cuda()
classifier_feature_dim = classifier.features_dim
# define optimizer and lr scheduler
all_parameters = classifier.get_parameters()
optimizer = SGD(all_parameters, args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True)
lr_sheduler = LrScheduler(optimizer, init_lr=args.lr, gamma=0.001, decay_rate=0.75)
# initialize the memory module
memory_target_features = torch.zeros(t_len, classifier_feature_dim).cuda()
memory_target_labels = torch.zeros(t_len).long().cuda()
flag = False
for _, (images, label, index) in enumerate(val_loader):
del _
images = images.cuda()
if images.size(0) == 1:
temp_iter_val = iter(val_loader)
images_a, _, _ = temp_iter_val.next()
images_a = images_a.cuda()
images = torch.cat((images, images_a), dim=0)
flag = True
del temp_iter_val
del _
with torch.no_grad():
predictions, features = classifier(images)
pseudo_labels = predictions.argmax(1)
if flag:
memory_target_features[index] = features[0].unsqueeze(0)
memory_target_labels[index] = pseudo_labels[0].unsqueeze(0)
flag = False
else:
memory_target_features[index] = features
memory_target_labels[index] = pseudo_labels
gc.collect()
memory_source_features = torch.zeros(s_len, classifier_feature_dim).cuda()
memory_source_labels = torch.zeros(s_len).long().cuda()
flag = False
for _, (images, label, index) in enumerate(memory_source_loader):
del _
images = images.cuda()
label = label.cuda()
if images.size(0) == 1:
temp_iter = iter(memory_source_loader)
images_a, _, _ = temp_iter.next()
images_a = images_a.cuda()
images = torch.cat((images, images_a), dim=0)
flag = True
del temp_iter
del _
with torch.no_grad():
_, features = classifier(images)
del _
if flag:
memory_source_features[index] = features[0].unsqueeze(0)
memory_source_labels[index] = label
flag = False
else:
memory_source_features[index] = features
memory_source_labels[index] = label
gc.collect()
del memory_source_loader
print("memory module initialization has finished!")
# start training
best_acc1 = 0.
cls_criterion = Cls_Loss(num_classes).cuda()
for epoch in range(args.epochs):
# train for one epoch
train(train_source_iter, train_target_iter, classifier, optimizer,
lr_sheduler, epoch, args, cls_criterion, memory_source_features, memory_source_labels,
memory_target_features, memory_target_labels)
# evaluate on validation set
if args.dset == "visda":
acc1 = validate_visda(val_loader, classifier, epoch, config)
else:
acc1 = validate(val_loader, classifier, args)
# remember the best top1 accuracy and checkpoint
if acc1 > best_acc1:
best_model = copy.deepcopy(classifier.state_dict())
best_acc1 = max(acc1, best_acc1)
print("epoch = {:02d}, acc1={:.3f}, best_acc1 = {:.3f}".format(epoch, acc1, best_acc1))
config["out_file"].write("epoch = {:02d}, best_acc1 = {:.3f}, best_acc1 = {:.3f}".format(epoch, acc1, best_acc1) + '\n')
config["out_file"].flush()
print("best_acc1 = {:.3f}".format(best_acc1))
config["out_file"].write("best_acc1 = {:.3f}".format(best_acc1) + '\n')
config["out_file"].flush()
# evaluate on test set
classifier.load_state_dict(best_model)
if args.dset == "visda":
acc1 = validate_visda(test_loader, classifier, epoch, config)
else:
acc1 = validate(test_loader, classifier, args)
print("test_acc1 = {:.3f}".format(acc1))
config["out_file"].write("test_acc1 = {:.3f}".format(acc1) + '\n')
config["out_file"].flush()
def train(train_source_iter: ContinuousDataloader, train_target_iter: ContinuousDataloader, model: ImageClassifier,
optimizer: SGD, lr_sheduler: LrScheduler, epoch: int, args: argparse.Namespace, cls_criterion, memory_source_features,
memory_source_labels, memory_target_features, memory_target_labels):
# switch to train mode
model.train()
max_iters = args.iters_per_epoch * args.epochs
for i in range(args.iters_per_epoch):
current_iter = i + args.iters_per_epoch * epoch
Lambda = args.lambda0 * (float(current_iter) / float(max_iters))
lr_sheduler.step()
x_s, labels_s, idx_source = next(train_source_iter)
x_t, _ , idx_target = next(train_target_iter)
x_s = x_s.cuda()
x_t = x_t.cuda()
labels_s = labels_s.cuda()
# get features and logit outputs
x = torch.cat((x_s, x_t), dim=0)
y, f = model(x)
y_s, y_t = y.chunk(2, dim=0)
f_s, f_t = f.chunk(2, dim=0)
# update the memory module
memory_source_features[idx_source] = f_s
memory_target_features[idx_target] = f_t
memory_target_labels[idx_target] = y_t.argmax(1)
# estimate the mean and covariance
class_num = y_t.size(1)
mean_source = CalculateMean(memory_source_features, memory_source_labels, class_num)
mean_target = CalculateMean(memory_target_features, memory_target_labels, class_num)
cv_target = Calculate_CV(memory_target_features, memory_target_labels, mean_target, class_num)
# compute loss
cls_loss = cls_criterion(model.head, f_s, y_s, labels_s, Lambda, mean_source, mean_target, cv_target)
MI_loss = MI(y_t)
total_loss = cls_loss - args.MI * MI_loss
# compute gradient and do SGD step
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
# print training log
if i % args.print_freq == 0:
print("Epoch: [{:02d}][{}/{}] total_loss:{:.3f} cls_loss:{:.3f} MI_loss:{:.3f}".format(\
epoch, i, args.iters_per_epoch, total_loss, cls_loss, MI_loss))
def validate(val_loader: DataLoader, model: ImageClassifier, args: argparse.Namespace) -> float:
# switch to evaluate mode
model.eval()
start_test = True
with torch.no_grad():
for i, (images, target, _) in enumerate(val_loader):
images = images.cuda()
target = target.cuda()
# get logit outputs
output, _ = model(images)
if start_test:
all_output = output.float()
all_label = target.float()
start_test = False
else:
all_output = torch.cat((all_output, output.float()), 0)
all_label = torch.cat((all_label, target.float()), 0)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
accuracy = accuracy * 100.0
print(' accuracy:{:.3f}'.format(accuracy))
return accuracy
def validate_visda(val_loader, model, epoch, config):
dict = {0: "plane", 1: "bcybl", 2: "bus", 3: "car", 4: "horse", 5: "knife", 6: "mcyle", 7: "person", 8: "plant", \
9: "sktb", 10: "train", 11: "truck"}
model.eval()
with torch.no_grad():
tick = 0
subclasses_correct = np.zeros(12)
subclasses_tick = np.zeros(12)
for i, (imgs, labels, _) in enumerate(val_loader):
tick += 1
imgs = imgs.cuda()
pred, _ = model(imgs)
pred = nn.Softmax(dim=1)(pred)
pred = pred.data.cpu().numpy()
pred = pred.argmax(axis=1)
labels = labels.numpy()
for i in range(pred.size):
subclasses_tick[labels[i]] += 1
if pred[i] == labels[i]:
subclasses_correct[pred[i]] += 1
subclasses_result = np.divide(subclasses_correct, subclasses_tick)
print("Epoch [:02d]:".format(epoch))
for i in range(12):
log_str1 = '\t{}----------({:.3f})'.format(dict[i], subclasses_result[i] * 100.0)
print(log_str1)
config["out_file"].write(log_str1 + "\n")
avg = subclasses_result.mean()
avg = avg * 100.0
log_avg = '\taverage:{:.3f}'.format(avg)
print(log_avg)
config["out_file"].write(log_avg + "\n")
config["out_file"].flush()
return avg
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Transferable Semantic Augmentation for Domain Adaptation')
parser.add_argument('--arch', type=str, default='resnet50', choices=['resnet50', 'resnet101'])
parser.add_argument('--gpu_id', type=str, nargs='?', default='5', help="device id to run")
parser.add_argument('--dset', type=str, default='office', choices=['office', 'visda', 'office-home'], help="The dataset used")
parser.add_argument('--s_dset_path', type=str, default='/data1/TL/data/list/office/webcam_31.txt', help="The source dataset path list")
parser.add_argument('--t_dset_path', type=str, default='/data1/TL/data/list/office/amazon_31.txt', help="The target dataset path list")
parser.add_argument('--output_dir', type=str, default='log/office31', help="output directory of logs")
parser.add_argument('--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=40, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--iters-per-epoch', default=500, type=int, help='Number of iterations per epoch')
parser.add_argument('--print-freq', default=100, type=int, metavar='N', help='print frequency (default: 100)')
parser.add_argument('--batch-size', default=32, type=int, metavar='N', help='mini-batch size (default: 32)')
parser.add_argument('--lr', default=0.01, type=float, metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight-decay', default=1e-3, type=float, metavar='W', help='weight decay (default: 1e-3)', dest='weight_decay')
parser.add_argument('--seed', default=1, type=int, help='seed for initializing training. ')
parser.add_argument('--lambda0', type=float, default=0.25, help="hyper-parameter: lambda0")
parser.add_argument('--MI', type=float, default=0.1, help="MI_loss_tradeoff")
args = parser.parse_args()
config = {}
if not osp.exists(args.output_dir):
os.makedirs(args.output_dir)
task = args.s_dset_path.split('/')[-1].split('.')[0].split('_')[0] + "-" + \
args.t_dset_path.split('/')[-1].split('.')[0].split('_')[0]
config["out_file"] = open(osp.join(args.output_dir, get_current_time() + "_" + task + "_log.txt"), "w")
for arg in vars(args):
print("{} = {}".format(arg, getattr(args, arg)))
config["out_file"].write(str("{} = {}".format(arg, getattr(args, arg))) + "\n")
config["out_file"].flush()
main(args, config)