From 57f0ea91a2494ba3b294737f83ecd2f013fe2813 Mon Sep 17 00:00:00 2001 From: Isotr0py Date: Mon, 16 Dec 2024 18:09:53 +0800 Subject: [PATCH] [Model] Refactor Ultravox to use merged input processor (#11198) Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: Cyrus Leung --- examples/offline_inference_audio_language.py | 10 +- tests/distributed/test_pipeline_parallel.py | 2 +- tests/entrypoints/openai/test_audio.py | 1 + .../audio_language/test_ultravox.py | 5 +- vllm/entrypoints/chat_utils.py | 2 +- vllm/model_executor/models/ultravox.py | 244 ++++++++---------- vllm/multimodal/processing.py | 19 +- 7 files changed, 129 insertions(+), 154 deletions(-) diff --git a/examples/offline_inference_audio_language.py b/examples/offline_inference_audio_language.py index 050b791b62adb..68b786961b14a 100644 --- a/examples/offline_inference_audio_language.py +++ b/examples/offline_inference_audio_language.py @@ -25,16 +25,16 @@ def run_ultravox(question: str, audio_count: int): tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [{ - 'role': - 'user', - 'content': - "<|reserved_special_token_0|>\n" * audio_count + question + 'role': 'user', + 'content': "<|audio|>\n" * audio_count + question }] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) - llm = LLM(model=model_name, limit_mm_per_prompt={"audio": audio_count}) + llm = LLM(model=model_name, + trust_remote_code=True, + limit_mm_per_prompt={"audio": audio_count}) stop_token_ids = None return llm, prompt, stop_token_ids diff --git a/tests/distributed/test_pipeline_parallel.py b/tests/distributed/test_pipeline_parallel.py index 85d408efafe96..ddbf40f089407 100644 --- a/tests/distributed/test_pipeline_parallel.py +++ b/tests/distributed/test_pipeline_parallel.py @@ -214,7 +214,7 @@ def iter_params(self, model_name: str): "Qwen/Qwen-VL-Chat": PPTestSettings.fast(trust_remote_code=True), "Qwen/Qwen2-Audio-7B-Instruct": PPTestSettings.fast(), "Qwen/Qwen2-VL-2B-Instruct": PPTestSettings.fast(), - "fixie-ai/ultravox-v0_3": PPTestSettings.fast(), + "fixie-ai/ultravox-v0_3": PPTestSettings.fast(trust_remote_code=True), # [Encoder-decoder] # TODO: Implement PP # "meta-llama/Llama-3.2-11B-Vision-Instruct": PPTestSettings.fast(), diff --git a/tests/entrypoints/openai/test_audio.py b/tests/entrypoints/openai/test_audio.py index a74109e2f5120..b579dcbb5c402 100644 --- a/tests/entrypoints/openai/test_audio.py +++ b/tests/entrypoints/openai/test_audio.py @@ -25,6 +25,7 @@ def server(): "--max-num-seqs", "5", "--enforce-eager", + "--trust-remote-code", ] with RemoteOpenAIServer(MODEL_NAME, args) as remote_server: diff --git a/tests/models/decoder_only/audio_language/test_ultravox.py b/tests/models/decoder_only/audio_language/test_ultravox.py index e100c6b9bb906..c548cfdf53414 100644 --- a/tests/models/decoder_only/audio_language/test_ultravox.py +++ b/tests/models/decoder_only/audio_language/test_ultravox.py @@ -16,7 +16,7 @@ AudioTuple = Tuple[np.ndarray, int] -VLLM_PLACEHOLDER = "<|reserved_special_token_0|>" +VLLM_PLACEHOLDER = "<|audio|>" HF_PLACEHOLDER = "<|audio|>" CHUNKED_PREFILL_KWARGS = { @@ -46,7 +46,8 @@ def audio(request): def server(request, audio_assets): args = [ "--dtype=bfloat16", "--max-model-len=4096", "--enforce-eager", - f"--limit-mm-per-prompt=audio={len(audio_assets)}" + f"--limit-mm-per-prompt=audio={len(audio_assets)}", + "--trust-remote-code" ] + [ f"--{key.replace('_','-')}={value}" for key, value in request.param.items() diff --git a/vllm/entrypoints/chat_utils.py b/vllm/entrypoints/chat_utils.py index c2054dcbfce0e..aaa5cd759366a 100644 --- a/vllm/entrypoints/chat_utils.py +++ b/vllm/entrypoints/chat_utils.py @@ -418,7 +418,7 @@ def _placeholder_str(self, modality: ModalityStr, raise TypeError(f"Unknown {modality} model type: {model_type}") elif modality == "audio": if model_type == "ultravox": - return "<|reserved_special_token_0|>" + return "<|audio|>" if model_type == "qwen2_audio": return (f"Audio {current_count}: " f"<|audio_bos|><|AUDIO|><|audio_eos|>") diff --git a/vllm/model_executor/models/ultravox.py b/vllm/model_executor/models/ultravox.py index ea1e5401d42c0..ebaa8a4c4f38a 100644 --- a/vllm/model_executor/models/ultravox.py +++ b/vllm/model_executor/models/ultravox.py @@ -3,41 +3,39 @@ import math from functools import cached_property, lru_cache -from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple, - TypedDict, Union, cast) +from typing import (Any, Dict, Iterable, List, Literal, Mapping, Optional, Set, + Tuple, TypedDict, Union) import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F +from transformers import BatchFeature from transformers.models.whisper import WhisperFeatureExtractor from transformers.models.whisper.modeling_whisper import WhisperEncoder from vllm.attention import AttentionMetadata from vllm.config import VllmConfig -from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData, - InputContext, token_inputs) +from vllm.inputs import InputContext from vllm.model_executor.layers.activation import SiluAndMul, get_act_fn from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.model_loader.loader import DefaultModelLoader from vllm.model_executor.sampling_metadata import SamplingMetadata -from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalKwargs, - NestedTensors) -from vllm.multimodal.utils import (cached_get_tokenizer, - consecutive_placeholder_ranges, - repeat_and_pad_placeholder_tokens) -from vllm.sequence import IntermediateTensors, SequenceData +from vllm.multimodal import MULTIMODAL_REGISTRY, NestedTensors +from vllm.multimodal.processing import (BaseMultiModalProcessor, + MultiModalDataDict, + MultiModalDataItems, ProcessorInputs, + PromptReplacement) +from vllm.sequence import IntermediateTensors from vllm.transformers_utils.configs.ultravox import UltravoxConfig -from vllm.utils import is_list_of from .interfaces import SupportsMultiModal, SupportsPP from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings_from_map) -_AUDIO_PLACEHOLDER_TOKEN = 128002 _AUDIO_TOKENS_PER_SECOND = 6.25 @@ -72,64 +70,18 @@ def get_ultravox_max_audio_tokens(ctx: InputContext): return math.ceil(feature_extractor.chunk_length * _AUDIO_TOKENS_PER_SECOND) -def dummy_seq_data_for_ultravox( - ctx: InputContext, - seq_len: int, - audio_count: int, -): - audio_length = min(get_ultravox_max_audio_tokens(ctx), - seq_len // audio_count) +class UltravoxMultiModalProcessor(BaseMultiModalProcessor): - return SequenceData.from_prompt_token_counts( - (_AUDIO_PLACEHOLDER_TOKEN, audio_length * audio_count), - (0, seq_len - audio_length * audio_count)), { - "audio": - consecutive_placeholder_ranges(num_items=audio_count, - item_size=audio_length) - } - - -def dummy_audio_for_ultravox( - ctx: InputContext, - audio_count: int, -): - feature_extractor = whisper_feature_extractor(ctx) - audio_and_sr = (np.array([0.0] * feature_extractor.chunk_length), 1) - return {"audio": [audio_and_sr] * audio_count} - - -def dummy_data_for_ultravox( - ctx: InputContext, - seq_len: int, - mm_counts: Mapping[str, int], -): - audio_count = mm_counts["audio"] - seq_data, ranges = dummy_seq_data_for_ultravox(ctx, seq_len, audio_count) - mm_dict = dummy_audio_for_ultravox(ctx, audio_count) - - return DummyData(seq_data, mm_dict, ranges) - - -def input_mapper_for_ultravox(ctx: InputContext, data: object): - if not isinstance(data, list): - data = [data] - - if len(data) == 0: - return MultiModalKwargs() - - # If the audio inputs are embeddings, no need for preprocessing - if is_list_of(data, torch.Tensor, check="all"): - return MultiModalKwargs({"audio_embeds": data}) - - audio_features = [] - for audio_input in data: - if not isinstance(audio_input, tuple): - raise NotImplementedError( - f"Unsupported data type: {type(audio_input)}") - - (audio, sr) = cast(Tuple[np.ndarray, Union[float, int]], audio_input) - feature_extractor = whisper_feature_extractor(ctx) + def _get_feature_extractor(self) -> WhisperFeatureExtractor: + return self._get_hf_processor().audio_processor.feature_extractor + def _resample_audio( + self, + audio: np.ndarray, + sr: int, + ) -> Dict[str, Union[np.ndarray, int]]: + # resample audio to the model's sampling rate + feature_extractor = self._get_feature_extractor() if sr != feature_extractor.sampling_rate: try: import librosa @@ -140,78 +92,92 @@ def input_mapper_for_ultravox(ctx: InputContext, data: object): orig_sr=sr, target_sr=feature_extractor.sampling_rate) sr = feature_extractor.sampling_rate + return {"audio": audio, "sampling_rate": sr} - minimum_audio_length = feature_extractor.n_fft // 2 + 1 - if len(audio) < minimum_audio_length: - # Not enough audio; pad it. - audio = np.pad(audio, (0, minimum_audio_length - len(audio))) - - single_audio_features = feature_extractor( - audio, sampling_rate=sr, padding="longest", - return_tensors="pt")["input_features"] - - # Remove the batch dimension because we're wrapping it in a list. - audio_features.append(single_audio_features.squeeze(0)) - - return MultiModalKwargs({"audio_features": audio_features}) - - -def input_processor_for_ultravox(ctx: InputContext, inputs: DecoderOnlyInputs): - multi_modal_data = inputs.get("multi_modal_data") - if multi_modal_data is None or "audio" not in multi_modal_data: - return inputs + def _apply_hf_processor( + self, + prompt: str, + mm_data: MultiModalDataDict, + mm_processor_kwargs: Mapping[str, object], + ) -> BatchFeature: + if not mm_data or not mm_data.get("audio", None): + return super()._apply_hf_processor(prompt, mm_data, + mm_processor_kwargs) + + audio_data = mm_data["audio"] + if not isinstance(audio_data, list): + audio_data = [audio_data] + + # Ultravox processor doesn't support multiple inputs, + # therefore we need to input text and audio one by one + tokenizer = self._get_tokenizer() + audio_features, audio_token_len = [], [] + processed_inputs = {} + for audio, sr in audio_data: + data = self._resample_audio(audio, sr) + processed_inputs = super()._apply_hf_processor( + prompt, data, mm_processor_kwargs) + prompt = tokenizer.decode(processed_inputs["input_ids"][0], + skip_special_tokens=False) + audio_features.append( + processed_inputs.pop("audio_values").squeeze(0)) + audio_token_len.append( + processed_inputs.pop("audio_token_len").item()) + + return dict( + **processed_inputs, + audio_features=audio_features, + audio_token_len=audio_token_len, + ) - if "multi_modal_placeholders" in inputs and "audio" in inputs[ - "multi_modal_placeholders"]: - # The inputs already have placeholders. - return inputs + def _get_processor_data( + self, + mm_data: MultiModalDataDict, + ) -> Tuple[Dict[str, Any], Dict[str, Any]]: + # Ultravox uses "audio" instead of "audios" as calling keyword + processor_data, passthrough_data = super()._get_processor_data(mm_data) + if "audios" in processor_data: + processor_data["audio"] = processor_data.pop("audios") + return processor_data, passthrough_data + + def _get_prompt_replacements( + self, + mm_items: MultiModalDataItems, + hf_inputs: BatchFeature, + mm_processor_kwargs: Mapping[str, object], + ) -> list[PromptReplacement]: + hf_processor = self._get_hf_processor() + placeholder = hf_processor.audio_token_replacement + + def get_replacement_ultravox(item_idx: int): + audio_token_len = hf_inputs["audio_token_len"][item_idx] + return placeholder * audio_token_len + + return [ + PromptReplacement( + modality="audio", + target="<|audio|>", + replacement=get_replacement_ultravox, + ) + ] - feature_extractor = whisper_feature_extractor(ctx) - audios = multi_modal_data["audio"] - if not isinstance(audios, list): - audios = [audios] - - audio_token_counts = [] - for audio in audios: - if isinstance(audio, torch.Tensor): - audio_num_tokens = audio.shape[1] - audio_token_counts.append(audio_num_tokens) - else: - audio_data, sample_rate = audio - audio_length = audio_data.shape[0] - if sample_rate != feature_extractor.sampling_rate: - # Account for resampling. - adjustment = feature_extractor.sampling_rate / sample_rate - audio_length = math.ceil(adjustment * audio_length) - - feature_extractor_output_length = math.ceil( - (audio_length - (feature_extractor.hop_length - 1)) / - feature_extractor.hop_length) - - uv_config = ctx.get_hf_config(UltravoxConfig) - audio_num_tokens = min( - max( - 1, - math.ceil(feature_extractor_output_length / - (uv_config.stack_factor * 2))), - get_ultravox_max_audio_tokens(ctx)) - audio_token_counts.append(audio_num_tokens) - - tokenizer = cached_get_tokenizer(ctx.model_config.tokenizer) - - new_prompt, new_token_ids, ranges = repeat_and_pad_placeholder_tokens( - tokenizer, - inputs.get("prompt"), - inputs["prompt_token_ids"], - placeholder_token_id=_AUDIO_PLACEHOLDER_TOKEN, - repeat_count=audio_token_counts, - ) - - # NOTE: Create a defensive copy of the original inputs - return token_inputs(prompt_token_ids=new_token_ids, - prompt=new_prompt, - multi_modal_data=multi_modal_data, - multi_modal_placeholders={"audio": ranges}) + def _get_dummy_mm_inputs( + self, + mm_counts: Mapping[str, int], + ) -> ProcessorInputs: + feature_extractor = self._get_feature_extractor() + sampling_rate = feature_extractor.sampling_rate + audio_len = feature_extractor.chunk_length * sampling_rate + + audio_count = mm_counts["audio"] + audio = np.zeros(audio_len) + data = {"audio": [(audio, sampling_rate)] * audio_count} + + return ProcessorInputs( + prompt_text="<|audio|>" * audio_count, + mm_data=data, + mm_processor_kwargs={}, + ) class StackAudioFrames(nn.Module): @@ -332,11 +298,9 @@ def forward( return hidden_states -@MULTIMODAL_REGISTRY.register_input_mapper("audio", input_mapper_for_ultravox) @MULTIMODAL_REGISTRY.register_max_multimodal_tokens( "audio", get_ultravox_max_audio_tokens) -@INPUT_REGISTRY.register_dummy_data(dummy_data_for_ultravox) -@INPUT_REGISTRY.register_input_processor(input_processor_for_ultravox) +@MULTIMODAL_REGISTRY.register_processor(UltravoxMultiModalProcessor) class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): diff --git a/vllm/multimodal/processing.py b/vllm/multimodal/processing.py index ce6bec1d49aac..339e193eefe20 100644 --- a/vllm/multimodal/processing.py +++ b/vllm/multimodal/processing.py @@ -594,14 +594,10 @@ def _find_placeholders( return list( iter_placeholders(all_prompt_repls, new_token_ids, mm_item_counts)) - def _apply_hf_processor( + def _get_processor_data( self, - prompt: str, mm_data: MultiModalDataDict, - mm_processor_kwargs: Mapping[str, object], ) -> BatchFeature: - hf_processor = self._get_hf_processor(**mm_processor_kwargs) - processor_data = dict[str, Any]() passthrough_data = dict[str, Any]() for k, v in mm_data.items(): @@ -619,6 +615,19 @@ def _apply_hf_processor( processor_data[f"{k}s"] = v else: processor_data[k] = v + return processor_data, passthrough_data + + def _apply_hf_processor( + self, + prompt: str, + mm_data: MultiModalDataDict, + mm_processor_kwargs: Mapping[str, object], + ) -> BatchFeature: + # some mm_processor_kwargs may be used in processor initialization + # instead of processor call + hf_processor = self._get_hf_processor(**mm_processor_kwargs) + + processor_data, passthrough_data = self._get_processor_data(mm_data) assert callable(hf_processor) mm_processor_kwargs = self.ctx.resolve_hf_processor_call_kwargs(