-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgfpop.m
49 lines (42 loc) · 1.79 KB
/
gfpop.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
%%% Main wrapper function that takes in all the necessary gfpop info and
%%% reorders the graph and calculates the changepoints.
%%% For more info on each of the functions gfpopEdge and gfpopGraph
%%% use 'help _____' for a description of the inputs and outputs of the
%%% functions.
%%%
%%% Inputs:
%%% data --> vector of doubles containing the data
%%% graph --> struct containing all of the edges of the graph
%%% type --> string defining the cost model to use
%%% weights --> vector of weights (same size as data)
%%% testMode --> boolean used to debug code. False by default.
%%%
%%% Ouput:
%%% result --> struct containing changepoints, states, forced,
%%% parameters, and the global cost.
%%%
%%% Example:
%%% ouput = gfpop(inputData,updown,"mean",ones(1,length(inputData)));
%%%
function result = gfpop(data,graph,type,varargin)
% Checking inputs
p = inputParser;
validTypes = ["mean","variance","exp","poisson","negbin"];
checkType = @(x) any(matches(validTypes,x));
addRequired(p,'data',@isvector);
addRequired(p,'graph',@isstruct);
addRequired(p,'type',checkType);
addParameter(p,'weights',ones(1,length(data)),@isvector);
addParameter(p,'testMode',0,@islogical);
parse(p,data,graph,type,varargin{:});
% Reordering Graph
[orderedGraph,vertexNames] = gfpopGraphReorder(p.Results.graph);
% Running gfpop mex function
result = gfpop_mex(p.Results.data,orderedGraph,p.Results.type,p.Results.weights,p.Results.testMode);
% Converting states from integers back to string names
tmp = [];
for i = 1:length(result.states)
tmp = [tmp vertexNames(result.states(i)+1)];
end
result.states = tmp;
end