-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #282 from jkalloor3/justink/mcr_gates
Adding Multiplexed Rotation Gates
- Loading branch information
Showing
7 changed files
with
477 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -72,6 +72,8 @@ | |
CRZGate | ||
CUGate | ||
FSIMGate | ||
MPRYGate | ||
MPRZGate | ||
PauliGate | ||
PauliZGate | ||
PhasedXZGate | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
"""This module implements the MPRYGate.""" | ||
from __future__ import annotations | ||
|
||
import numpy as np | ||
import numpy.typing as npt | ||
|
||
from bqskit.ir.gates.qubitgate import QubitGate | ||
from bqskit.qis.unitary.differentiable import DifferentiableUnitary | ||
from bqskit.qis.unitary.optimizable import LocallyOptimizableUnitary | ||
from bqskit.qis.unitary.unitary import RealVector | ||
from bqskit.qis.unitary.unitarymatrix import UnitaryMatrix | ||
from bqskit.utils.cachedclass import CachedClass | ||
|
||
|
||
def get_indices( | ||
index: int, | ||
target_qudit: int, | ||
num_qudits: int, | ||
) -> tuple[int, int]: | ||
"""Get indices for the matrix based on the target qubit.""" | ||
shift_qubit = num_qudits - target_qudit - 1 | ||
shift = 2 ** shift_qubit | ||
# Split into two parts around target qubit | ||
# 100 | 111 | ||
left = index // shift | ||
right = index % shift | ||
|
||
# Now, shift left by one spot to | ||
# make room for the target qubit | ||
left *= (shift * 2) | ||
# Now add 0 * new_ind and 1 * new_ind to get indices | ||
return left + right, left + shift + right | ||
|
||
|
||
class MPRYGate( | ||
QubitGate, | ||
DifferentiableUnitary, | ||
CachedClass, | ||
LocallyOptimizableUnitary, | ||
): | ||
""" | ||
A gate representing a multiplexed Y rotation. A multiplexed Y rotation | ||
uses n - 1 qubits as select qubits and applies a Y rotation to the target. | ||
If the target qubit is the last qubit, then the unitary is block diagonal. | ||
Each block is a 2x2 RY matrix with parameter theta. | ||
Since there are n - 1 select qubits, there are 2^(n-1) parameters (thetas). | ||
We allow the target qubit to be specified to any qubit, and the other qubits | ||
maintain their order. Qubit 0 is the most significant qubit. | ||
See this paper: https://arxiv.org/pdf/quant-ph/0406176 | ||
""" | ||
|
||
_qasm_name = 'mpry' | ||
|
||
def __init__( | ||
self, | ||
num_qudits: int, | ||
target_qubit: int = -1, | ||
) -> None: | ||
self._num_qudits = num_qudits | ||
# 1 param for each configuration of the selec qubits | ||
self._num_params = 2 ** (num_qudits - 1) | ||
# By default, the controlled qubit is the last qubit | ||
if target_qubit == -1: | ||
target_qubit = num_qudits - 1 | ||
self.target_qubit = target_qubit | ||
super().__init__() | ||
|
||
def get_unitary(self, params: RealVector = []) -> UnitaryMatrix: | ||
"""Return the unitary for this gate, see :class:`Unitary` for more.""" | ||
self.check_parameters(params) | ||
|
||
matrix = np.zeros( | ||
( | ||
2 ** self.num_qudits, | ||
2 ** self.num_qudits, | ||
), dtype=np.complex128, | ||
) | ||
for i, param in enumerate(params): | ||
cos = np.cos(param / 2) | ||
sin = np.sin(param / 2) | ||
|
||
# Now, get indices based on target qubit. | ||
# i corresponds to the configuration of the | ||
# select qubits (e.g 5 = 101). Now, the | ||
# target qubit is 0,1 for both the row and col | ||
# indices. So, if i = 5 and the target_qubit is 2 | ||
# Then the rows/cols are 1001 and 1101 | ||
x1, x2 = get_indices(i, self.target_qubit, self.num_qudits) | ||
|
||
matrix[x1, x1] = cos | ||
matrix[x2, x2] = cos | ||
matrix[x2, x1] = sin | ||
matrix[x1, x2] = -1 * sin | ||
|
||
return UnitaryMatrix(matrix) | ||
|
||
def get_grad(self, params: RealVector = []) -> npt.NDArray[np.complex128]: | ||
""" | ||
Return the gradient for this gate. | ||
See :class:`DifferentiableUnitary` for more info. | ||
""" | ||
self.check_parameters(params) | ||
|
||
grad = np.zeros( | ||
( | ||
len(params), 2 ** self.num_qudits, | ||
2 ** self.num_qudits, | ||
), dtype=np.complex128, | ||
) | ||
|
||
# For each parameter, calculate the derivative | ||
# with respect to that parameter | ||
for i, param in enumerate(params): | ||
dcos = -np.sin(param / 2) / 2 | ||
dsin = -1j * np.cos(param / 2) / 2 | ||
|
||
# Again, get indices based on target qubit. | ||
x1, x2 = get_indices(i, self.target_qubit, self.num_qudits) | ||
|
||
grad[i, x1, x1] = dcos | ||
grad[i, x2, x2] = dcos | ||
grad[i, x2, x1] = dsin | ||
grad[i, x1, x2] = -1 * dsin | ||
|
||
return grad | ||
|
||
def optimize(self, env_matrix: npt.NDArray[np.complex128]) -> list[float]: | ||
""" | ||
Return the optimal parameters with respect to an environment matrix. | ||
See :class:`LocallyOptimizableUnitary` for more info. | ||
""" | ||
self.check_env_matrix(env_matrix) | ||
thetas: list[float] = [0] * self.num_params | ||
|
||
for i in range(self.num_params): | ||
x1, x2 = get_indices(i, self.target_qubit, self.num_qudits) | ||
a = np.real(env_matrix[x1, x1] + env_matrix[x2, x2]) | ||
b = np.real(env_matrix[x2, x1] - env_matrix[x1, x2]) | ||
theta = 2 * np.arccos(a / np.sqrt(a ** 2 + b ** 2)) | ||
theta *= -1 if b > 0 else 1 | ||
thetas[i] = theta | ||
|
||
return thetas | ||
|
||
@staticmethod | ||
def get_decomposition(params: RealVector = []) -> tuple[ | ||
RealVector, | ||
RealVector, | ||
]: | ||
""" | ||
Get the corresponding parameters for one level of decomposition of a | ||
multiplexed gate. | ||
This is used in the decomposition of both the MPRY and MPRZ gates. | ||
""" | ||
new_num_params = len(params) // 2 | ||
left_params = np.zeros(new_num_params) | ||
right_params = np.zeros(new_num_params) | ||
for i in range(len(left_params)): | ||
left_param = (params[i] + params[i + new_num_params]) / 2 | ||
right_param = (params[i] - params[i + new_num_params]) / 2 | ||
left_params[i] = left_param | ||
right_params[i] = right_param | ||
|
||
return left_params, right_params | ||
|
||
@property | ||
def name(self) -> str: | ||
"""The name of this gate, with the number of qudits appended.""" | ||
base_name = getattr(self, '_name', self.__class__.__name__) | ||
return f'{base_name}_{self.num_qudits}' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
"""This module implements the MPRZGate.""" | ||
from __future__ import annotations | ||
|
||
import numpy as np | ||
import numpy.typing as npt | ||
|
||
from bqskit.ir.gates.parameterized.mpry import get_indices | ||
from bqskit.ir.gates.qubitgate import QubitGate | ||
from bqskit.qis.unitary.differentiable import DifferentiableUnitary | ||
from bqskit.qis.unitary.optimizable import LocallyOptimizableUnitary | ||
from bqskit.qis.unitary.unitary import RealVector | ||
from bqskit.qis.unitary.unitarymatrix import UnitaryMatrix | ||
from bqskit.utils.cachedclass import CachedClass | ||
|
||
|
||
class MPRZGate( | ||
QubitGate, | ||
DifferentiableUnitary, | ||
CachedClass, | ||
LocallyOptimizableUnitary, | ||
): | ||
""" | ||
A gate representing a multiplexed Z rotation. A multiplexed Z rotation | ||
uses n - 1 qubits as select qubits and applies a Z rotation to the target. | ||
If the target qubit is the last qubit, then the unitary is block diagonal. | ||
Each block is a 2x2 RZ matrix with parameter theta. | ||
Since there are n - 1 select qubits, there are 2^(n-1) parameters (thetas). | ||
We allow the target qubit to be specified to any qubit, and the other qubits | ||
maintain their order. Qubit 0 is the most significant qubit. | ||
Why is 0 the MSB? Typically, in the QSD diagram, we see the block drawn | ||
with qubit 0 at the top and qubit n-1 at the bottom. Then, the decomposition | ||
slowly moves from the bottom to the top. | ||
See this paper: https://arxiv.org/pdf/quant-ph/0406176 | ||
""" | ||
|
||
_qasm_name = 'mprz' | ||
|
||
def __init__( | ||
self, | ||
num_qudits: int, | ||
target_qubit: int = -1, | ||
) -> None: | ||
""" | ||
Create a new MPRZGate with `num_qudits` qubits and `target_qubit` as the | ||
target qubit. We then have 2^(n-1) parameters for this gate. | ||
For Example: | ||
`num_qudits` = 3, `target_qubit` = 1 | ||
Then, the select qubits are 0 and 2 with 0 as the MSB. | ||
If the input vector is |0x0> then the selection is 00, and | ||
RZ(theta_0) is applied to the target qubit. | ||
If the input vector is |1x0> then the selection is 01, and | ||
RZ(theta_1) is applied to the target qubit. | ||
""" | ||
self._num_qudits = num_qudits | ||
# 1 param for each configuration of the selec qubits | ||
self._num_params = 2 ** (num_qudits - 1) | ||
# By default, the controlled qubit is the last qubit | ||
if target_qubit == -1: | ||
target_qubit = num_qudits - 1 | ||
self.target_qubit = target_qubit | ||
super().__init__() | ||
|
||
def get_unitary(self, params: RealVector = []) -> UnitaryMatrix: | ||
"""Return the unitary for this gate, see :class:`Unitary` for more.""" | ||
self.check_parameters(params) | ||
matrix = np.zeros( | ||
( | ||
2 ** self.num_qudits, | ||
2 ** self.num_qudits, | ||
), dtype=np.complex128, | ||
) | ||
for i, param in enumerate(params): | ||
pos = np.exp(1j * param / 2) | ||
neg = np.exp(-1j * param / 2) | ||
|
||
# Get correct indices based on target qubit | ||
# See :class:`mcry` for more info | ||
x1, x2 = get_indices(i, self.target_qubit, self.num_qudits) | ||
|
||
matrix[x1, x1] = neg | ||
matrix[x2, x2] = pos | ||
|
||
return UnitaryMatrix(matrix) | ||
|
||
def get_grad(self, params: RealVector = []) -> npt.NDArray[np.complex128]: | ||
""" | ||
Return the gradient for this gate. | ||
See :class:`DifferentiableUnitary` for more info. | ||
""" | ||
self.check_parameters(params) | ||
|
||
grad = np.zeros( | ||
( | ||
len(params), 2 ** self.num_qudits, | ||
2 ** self.num_qudits, | ||
), dtype=np.complex128, | ||
) | ||
|
||
# For each parameter, calculate the derivative | ||
# with respect to that parameter | ||
for i, param in enumerate(params): | ||
dpos = 1j * np.exp(1j * param / 2) / 2 | ||
dneg = -1j * np.exp(-1j * param / 2) / 2 | ||
|
||
# Again, get indices based on target qubit. | ||
x1, x2 = get_indices(i, self.target_qubit, self.num_qudits) | ||
|
||
grad[i, x1, x1] = dpos | ||
grad[i, x2, x2] = dneg | ||
|
||
return grad | ||
|
||
def optimize(self, env_matrix: npt.NDArray[np.complex128]) -> list[float]: | ||
""" | ||
Return the optimal parameters with respect to an environment matrix. | ||
See :class:`LocallyOptimizableUnitary` for more info. | ||
""" | ||
self.check_env_matrix(env_matrix) | ||
thetas: list[float] = [0] * self.num_params | ||
|
||
for i in range(self.num_params): | ||
x1, x2 = get_indices(i, self.target_qubit, self.num_qudits) | ||
# Optimize each RZ independently from indices | ||
# Taken from QFACTOR repo | ||
a = np.angle(env_matrix[x1, x1]) | ||
b = np.angle(env_matrix[x2, x2]) | ||
# print(thetas) | ||
thetas[i] = a - b | ||
|
||
return thetas | ||
|
||
@property | ||
def name(self) -> str: | ||
"""The name of this gate, with the number of qudits appended.""" | ||
base_name = getattr(self, '_name', self.__class__.__name__) | ||
return f'{base_name}_{self.num_qudits}' |
Oops, something went wrong.