-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVideo classification using CNN-RNN.py
192 lines (173 loc) · 7.59 KB
/
Video classification using CNN-RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import cv2
import tensorflow as tf
import os
from tensorflow.keras.preprocessing.sequence import pad_sequences
import warnings
import pathlib
import random
import pandas as pd
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
from pathlib import Path
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import keras
from keras import layers
import numpy as np
from IPython.display import Video
from tensorflow_docs.vis import embed
dataset_path =r"C:\Users\Dell\Downloads\Human Activity Recognition - Video Dataset"
label_types = [d for d in os.listdir(dataset_path) if os.path.isdir(os.path.join(dataset_path,d))]
Image_size=244
Batch_size = 62
Epochs = 100
Max_seq_length =20
Num_Features =2048
def crop_centre_square(frame):
y,x=frame.shape[0:2]
min_dim = min(y, x)
start_x = (x // 2) - (min_dim // 2)
start_y = (y // 2) - (min_dim // 2)
return frame[start_y:start_y+min_dim,start_x:start_x+min_dim]
def load_video(dataset_path,max_frames=30,resize=(Image_size,Image_size)):
cap=cv2.VideoCapture(dataset_path)
frames=[]
try:
while True:
ret,frame = cap.read()
if not ret:
break
frame = crop_centre_square(frame)
frame = cv2.resize(frame,resize)
frame=frame[:,:,[2,1,0]]
frames.append(frame)
if len(frames)==max_frames:
break
finally:
cap.release()
return np.array(frames)
plt.figure(figsize=(20,20))
all_classes = os.listdir(dataset_path)
random_range =random.sample(range(len(all_classes)),7)
for count , random_index in enumerate(random_range,1):
select_class_name = all_classes[random_index]
print(select_class_name)
video_files_names_list = os.listdir(f'{dataset_path}/{select_class_name}')
selected_video_file_name =random.choice(video_files_names_list)
Video_reader=cv2.VideoCapture(f'{dataset_path}/{select_class_name}/{selected_video_file_name}')
__,bgr_frame =Video_reader.read()
Video_reader.release()
rgb_frame =cv2.cvtColor(bgr_frame,cv2.COLOR_BGR2RGB)
cv2.putText(rgb_frame,select_class_name,(10,30),cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,1,(0,0,255),2)
plt.subplot(6,5,count)
plt.imshow(rgb_frame)
plt.axis('off')
def build_feature_extractor():
feature_extractor = keras.applications.InceptionV3(
include_top=False,
weights="imagenet",
pooling="avg",
input_shape=(Image_size,Image_size,3),
)
preprocess_input =keras.applications.inception_v3.preprocess_input
inputs = keras.Input((Image_size,Image_size,3))
preprocessed = preprocess_input(inputs)
outputs= feature_extractor(preprocessed)
return keras.Model(inputs,outputs,name="feature_extractor")
feature_extractor = build_feature_extractor()
def extract_features(Video_path,max_frames=30):
frames = load_video(Video_path,max_frames=max_frames)
features=[]
for frame in frames:
frame=np.expand_dims(frame,axis=0)
feature=feature_extractor.predict(frame)
features.append(feature[0])
return np.array(features)
video_path = f'{dataset_path}/{select_class_name}/{selected_video_file_name}'
features = extract_features(video_path)
print(features)
print(video_path)
features_list=[]
lables_list=[]
for label in label_types:
label_folder = os.path.join(dataset_path,label)
video_files = os.listdir(label_folder)
for video_file in video_files:
video_path=os.path.join(label_folder,video_file)
features =extract_features(video_path,max_frames=Max_seq_length)
features_list.append(features)
lables_list.append(label)
print(len(features_list))
if len(features) == Max_seq_length:
features_list.append(features)
lables_list.append(label)
x=np.array(features_list)
y=np.array(lables_list)
label_encoder = LabelEncoder()
y_encoded =label_encoder.fit_transform(y)
print(f"Length of y_encoded: {len(y_encoded)}")
features_padded =pad_sequences(x,maxlen=Max_seq_length,padding='post',truncating='post')
print(f"Length of features_padded: {len(features_padded)}")
x_reshaped = features_padded.reshape(features_padded.shape[0],Max_seq_length, Num_Features)
#x_padded = np.squeeze(features_padded, axis=2)
x_train,x_test,y_train,y_test=train_test_split(features_padded,y_encoded,train_size=0.5,test_size=0.5,random_state=42,stratify=y_encoded)
print("Training data shape:", x_train.shape)
print("Testing data shape:", x_test.shape)
x_train_flat = x_train.reshape(x_train.shape[0],x_train.shape[1], -1)
x_test_flat = x_test.reshape(x_test.shape[0],x_test.shape[1], -1)
#train_data = pd.DataFrame(x_train_flat)
#train_data['label'] = y_train
#test_data = pd.DataFrame(x_test_flat)
#test_data['label'] = y_test
#train_data.to_csv('train_data.csv', index=False)
#test_data.to_csv('test_data.csv', index=False)
#print("CSV files for train and test data saved successfully.")
def get_sequence_model(input_shape,select_class_name):
model = keras.Sequential()
model.add(layers.Masking(mask_value=0.0, input_shape=(Max_seq_length,Num_Features)))
model.add(layers.LSTM(64,return_sequences=True))
model.add(layers.LSTM(64))
model.add(layers.Dense(64,activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(select_class_name ,activation='softmax'))
return model
input_shape =(Max_seq_length,Num_Features)
select_class_name = len(label_types)
nn_model =get_sequence_model(input_shape,select_class_name)
nn_model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
nn_model.summary()
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
history = nn_model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=Epochs, batch_size=Batch_size,callbacks=[early_stopping])
model_evaluation=nn_model.evaluate( x_test,y_test)
nn_model.save('Video_Classfication_model.h5')
def prepare_single_video(video_file_path, max_seq_length, label_types):
Video_reader = cv2.VideoCapture(video_file_path)
frames_list = []
Video_frames_count = int(Video_reader.get(cv2.CAP_PROP_FRAME_COUNT))
skip_frames_window = max(int(Video_frames_count / max_seq_length), 1)
for frame_counter in range(max_seq_length):
Video_reader.set(cv2.CAP_PROP_POS_FRAMES, frame_counter * skip_frames_window)
success, frame = Video_reader.read()
if not success:
break
resized_frame = cv2.resize(frame, (Image_size, Image_size))
normalized_frame = resized_frame / 255.0
frames_list.append(normalized_frame)
Video_reader.release()
# Extract features
features = []
for frame in frames_list:
frame = np.expand_dims(frame, axis=0)
feature = feature_extractor.predict(frame)
features.append(feature[0])
features = np.array(features)
if len(features) == max_seq_length:
features_padded = pad_sequences([features], maxlen=max_seq_length, padding='post', truncating='post')
predicted_labels_probabilities = nn_model.predict(features_padded)
predicted_label = np.argmax(predicted_labels_probabilities)
predicted_class_name = label_types[predicted_label]
print(f'Action Predicted: {predicted_class_name}\nConfidence: {predicted_labels_probabilities[0][predicted_label]}')
input_video_file_path = "D:\\coding\\horse fitness\\Walking With Phone Stock Footage #Stock Footage.mp4"
prepare_single_video(input_video_file_path, Max_seq_length,label_types)
Video(input_video_file_path, embed=True, width=600)
os.system(f'start "" "{input_video_file_path}"')