-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathBinmethod(ChiMerge).py
104 lines (94 loc) · 7.29 KB
/
Binmethod(ChiMerge).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import pandas as pd
import numpy as np
data = pd.read_csv('iris.csv', sep="\t", na_values=['', '?'])
temp = data[['x','y']]
# 定义一个卡方分箱(可设置参数置信度水平与箱的个数)停止条件为大于置信水平且小于bin的数目
def ChiMerge(df, variable, flag, confidenceVal=3.841, bin=10, sample = None):
return df
'''
#运行前需要 import pandas as pd 和 import numpy as np
#df:传入一个数据框仅包含一个需要卡方分箱的变量与正负样本标识(正样本为1,负样本为0)
#variable:需要卡方分箱的变量名称(字符串)
#flag:正负样本标识的名称(字符串)
#confidenceVal:置信度水平(默认是不进行抽样95%)
#bin:最多箱的数目
#sample: 为抽样的数目(默认是不进行抽样),因为如果观测值过多运行会较慢
'''
#进行数据格式化录入、
total_num = df.groupby([variable])[flag].count() # 统计需分箱变量每个值数目
total_num = pd.DataFrame({'total_num': total_num}) # 创建一个数据框保存之前的结果
positive_class = df.groupby([variable])[flag].sum() # 统计需分箱变量每个值正样本数
positive_class = pd.DataFrame({'positive_class': positive_class}) # 创建一个数据框保存之前的结果
regroup = pd.merge(total_num, positive_class, left_index=True, right_index=True,
how='inner') # 组合total_num与positive_class
regroup.reset_index(inplace=True)
regroup['negative_class'] = regroup['total_num'] - regroup['positive_class'] # 统计需分箱变量每个值负样本数
regroup = regroup.drop('total_num', axis=1)
np_regroup = np.array(regroup) # 把数据框转化为numpy(提高运行效率)
print('已完成数据读入,正在计算数据初处理')
#处理连续没有正样本或负样本的区间,并进行区间的合并(以免卡方值计算报错)
i = 0
while (i <= np_regroup.shape[0] - 2):
if ((np_regroup[i, 1] == 0 and np_regroup[i + 1, 1] == 0) or ( np_regroup[i, 2] == 0 and np_regroup[i + 1, 2] == 0)):
np_regroup[i, 1] = np_regroup[i, 1] + np_regroup[i + 1, 1] # 正样本
np_regroup[i, 2] = np_regroup[i, 2] + np_regroup[i + 1, 2] # 负样本
np_regroup[i, 0] = np_regroup[i + 1, 0]
np_regroup = np.delete(np_regroup, i + 1, 0)
i = i - 1
i = i + 1
#对相邻两个区间进行卡方值计算
chi_table = np.array([]) # 创建一个数组保存相邻两个区间的卡方值
for i in np.arange(np_regroup.shape[0] - 1):
chi = (np_regroup[i, 1] * np_regroup[i + 1, 2] - np_regroup[i, 2] * np_regroup[i + 1, 1]) ** 2 \
* (np_regroup[i, 1] + np_regroup[i, 2] + np_regroup[i + 1, 1] + np_regroup[i + 1, 2]) / \
((np_regroup[i, 1] + np_regroup[i, 2]) * (np_regroup[i + 1, 1] + np_regroup[i + 1, 2]) * (
np_regroup[i, 1] + np_regroup[i + 1, 1]) * (np_regroup[i, 2] + np_regroup[i + 1, 2]))
chi_table = np.append(chi_table, chi)
print('已完成数据初处理,正在进行卡方分箱核心操作')
#把卡方值最小的两个区间进行合并(卡方分箱核心)
while (1):
if (len(chi_table) <= (bin - 1) and min(chi_table) >= confidenceVal):
break
chi_min_index = np.argwhere(chi_table == min(chi_table))[0] # 找出卡方值最小的位置索引
np_regroup[chi_min_index, 1] = np_regroup[chi_min_index, 1] + np_regroup[chi_min_index + 1, 1]
np_regroup[chi_min_index, 2] = np_regroup[chi_min_index, 2] + np_regroup[chi_min_index + 1, 2]
np_regroup[chi_min_index, 0] = np_regroup[chi_min_index + 1, 0]
np_regroup = np.delete(np_regroup, chi_min_index + 1, 0)
if (chi_min_index == np_regroup.shape[0] - 1): # 最小值试最后两个区间的时候
# 计算合并后当前区间与前一个区间的卡方值并替换
chi_table[chi_min_index - 1] = (np_regroup[chi_min_index - 1, 1] * np_regroup[chi_min_index, 2] - np_regroup[chi_min_index - 1, 2] * np_regroup[chi_min_index, 1]) ** 2 \
* (np_regroup[chi_min_index - 1, 1] + np_regroup[chi_min_index - 1, 2] + np_regroup[chi_min_index, 1] + np_regroup[chi_min_index, 2]) / \
((np_regroup[chi_min_index - 1, 1] + np_regroup[chi_min_index - 1, 2]) * (np_regroup[chi_min_index, 1] + np_regroup[chi_min_index, 2]) * (np_regroup[chi_min_index - 1, 1] + np_regroup[chi_min_index, 1]) * (np_regroup[chi_min_index - 1, 2] + np_regroup[chi_min_index, 2]))
# 删除替换前的卡方值
chi_table = np.delete(chi_table, chi_min_index, axis=0)
else:
# 计算合并后当前区间与前一个区间的卡方值并替换
chi_table[chi_min_index - 1] = (np_regroup[chi_min_index - 1, 1] * np_regroup[chi_min_index, 2] - np_regroup[chi_min_index - 1, 2] * np_regroup[chi_min_index, 1]) ** 2 \
* (np_regroup[chi_min_index - 1, 1] + np_regroup[chi_min_index - 1, 2] + np_regroup[chi_min_index, 1] + np_regroup[chi_min_index, 2]) / \
((np_regroup[chi_min_index - 1, 1] + np_regroup[chi_min_index - 1, 2]) * (np_regroup[chi_min_index, 1] + np_regroup[chi_min_index, 2]) * (np_regroup[chi_min_index - 1, 1] + np_regroup[chi_min_index, 1]) * (np_regroup[chi_min_index - 1, 2] + np_regroup[chi_min_index, 2]))
# 计算合并后当前区间与后一个区间的卡方值并替换
chi_table[chi_min_index] = (np_regroup[chi_min_index, 1] * np_regroup[chi_min_index + 1, 2] - np_regroup[chi_min_index, 2] * np_regroup[chi_min_index + 1, 1]) ** 2 \
* (np_regroup[chi_min_index, 1] + np_regroup[chi_min_index, 2] + np_regroup[chi_min_index + 1, 1] + np_regroup[chi_min_index + 1, 2]) / \
((np_regroup[chi_min_index, 1] + np_regroup[chi_min_index, 2]) * (np_regroup[chi_min_index + 1, 1] + np_regroup[chi_min_index + 1, 2]) * (np_regroup[chi_min_index, 1] + np_regroup[chi_min_index + 1, 1]) * (np_regroup[chi_min_index, 2] + np_regroup[chi_min_index + 1, 2]))
# 删除替换前的卡方值
chi_table = np.delete(chi_table, chi_min_index + 1, axis=0)
print('已完成卡方分箱核心操作,正在保存结果')
#把结果保存成一个数据框
result_data = pd.DataFrame() # 创建一个保存结果的数据框
result_data['variable'] = [variable] * np_regroup.shape[0] # 结果表第一列:变量名
list_temp = []
for i in np.arange(np_regroup.shape[0]):
if i == 0:
x = '0' + ',' + str(np_regroup[i, 0])
elif i == np_regroup.shape[0] - 1:
x = str(np_regroup[i - 1, 0]) + '+'
else:
x = str(np_regroup[i - 1, 0]) + ',' + str(np_regroup[i, 0])
list_temp.append(x)
result_data['interval'] = list_temp # 结果表第二列:区间
result_data['flag_0'] = np_regroup[:, 2] # 结果表第三列:负样本数目
result_data['flag_1'] = np_regroup[:, 1] # 结果表第四列:正样本数目
return result_data
#调用函数参数示例
bins = ChiMerge(temp, 'x','y', confidenceVal=3.841, bin=10,sample=None)
bins