-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
36 lines (28 loc) · 1.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import cv2
import numpy as np
import glob
import os
from utils import *
output_path = "output/"
calibration_path = "camera_cal/"
example_image = "test_images/whiteCarLaneSwitch.jpg"
example_video = "test_videos/project_video01.mp4"
if __name__ == "__main__":
# Camera calibration.
matrix_coeffs, dist_coeffs = calibrate_camera(calibration_path)
# Example distortion correction.
img = cv2.imread(example_image)
undistorted = cv2.undistort(img, matrix_coeffs, dist_coeffs, None, matrix_coeffs)
cv2.imwrite(f'{output_path}undistorted_image.jpg', undistorted)
# Create a binary image.
binary_image = create_binary_image(undistorted)
cv2.imwrite(f'{output_path}/binary_image.jpg', (binary_image * 255).astype(np.uint8))
# Apply a perspective transform - Get a bird's-eye view of the road.
warped, inverse_matrix = perspective_transform(binary_image)
cv2.imwrite(f'{output_path}/warped_image.jpg', (warped * 255).astype(np.uint8) )
# Identify lane pixels and fit lane lines using a polynomial.
left_fit, right_fit, color_fit_lines_image = detect_lane_pixels_and_fit(warped)
# Calculate curvature and vehicle position
left_curverad, right_curverad, center_dist = calculate_curvature_and_position(warped, left_fit, right_fit)
result = draw_lane_lines(undistorted, warped, (left_fit, right_fit), inverse_matrix)
process_video(example_video, matrix_coeffs)