forked from QwenLM/Qwen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
function_call_examples.py
240 lines (214 loc) · 7.66 KB
/
function_call_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Reference: https://openai.com/blog/function-calling-and-other-api-updates
import openai
# To start an OpenAI-like Qwen server, use the following commands:
# git clone https://github.com/QwenLM/Qwen-7B;
# cd Qwen-7B;
# pip install fastapi uvicorn openai pydantic sse_starlette;
# python openai_api.py;
#
# Then configure the api_base and api_key in your client:
openai.api_base = "http://localhost:8000/v1"
openai.api_key = "none"
def call_qwen(messages, functions=None):
print(messages)
if functions:
response = openai.ChatCompletion.create(
model="Qwen", messages=messages, functions=functions
)
else:
response = openai.ChatCompletion.create(model="Qwen", messages=messages)
print(response)
print(response.choices[0].message.content)
return response
def test_1():
messages = [{"role": "user", "content": "你好"}]
call_qwen(messages)
messages.append({"role": "assistant", "content": "你好!很高兴为你提供帮助。"})
messages.append({"role": "user", "content": "给我讲一个年轻人奋斗创业最终取得成功的故事。故事只能有一句话。"})
call_qwen(messages)
messages.append(
{
"role": "assistant",
"content": "故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。李明想要成为一名成功的企业家。……",
}
)
messages.append({"role": "user", "content": "给这个故事起一个标题"})
call_qwen(messages)
def test_2():
functions = [
{
"name_for_human": "谷歌搜索",
"name_for_model": "google_search",
"description_for_model": "谷歌搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。"
+ " Format the arguments as a JSON object.",
"parameters": [
{
"name": "search_query",
"description": "搜索关键词或短语",
"required": True,
"schema": {"type": "string"},
}
],
},
{
"name_for_human": "文生图",
"name_for_model": "image_gen",
"description_for_model": "文生图是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL。"
+ " Format the arguments as a JSON object.",
"parameters": [
{
"name": "prompt",
"description": "英文关键词,描述了希望图像具有什么内容",
"required": True,
"schema": {"type": "string"},
}
],
},
]
messages = [{"role": "user", "content": "你好"}]
call_qwen(messages, functions)
messages.append(
{"role": "assistant", "content": "你好!很高兴见到你。有什么我可以帮忙的吗?"},
)
messages.append({"role": "user", "content": "谁是周杰伦"})
call_qwen(messages, functions)
messages.append(
{
"role": "assistant",
"content": "Thought: 我应该使用Google搜索查找相关信息。",
"function_call": {
"name": "google_search",
"arguments": '{"search_query": "周杰伦"}',
},
}
)
messages.append(
{
"role": "function",
"name": "google_search",
"content": "Jay Chou is a Taiwanese singer.",
}
)
call_qwen(messages, functions)
messages.append(
{
"role": "assistant",
"content": "周杰伦(Jay Chou)是一位来自台湾的歌手。",
},
)
messages.append({"role": "user", "content": "他老婆是谁"})
call_qwen(messages, functions)
messages.append(
{
"role": "assistant",
"content": "Thought: 我应该使用Google搜索查找相关信息。",
"function_call": {
"name": "google_search",
"arguments": '{"search_query": "周杰伦 老婆"}',
},
}
)
messages.append(
{"role": "function", "name": "google_search", "content": "Hannah Quinlivan"}
)
call_qwen(messages, functions)
messages.append(
{
"role": "assistant",
"content": "周杰伦的老婆是Hannah Quinlivan。",
},
)
messages.append({"role": "user", "content": "给我画个可爱的小猫吧,最好是黑猫"})
call_qwen(messages, functions)
messages.append(
{
"role": "assistant",
"content": "Thought: 我应该使用文生图API来生成一张可爱的小猫图片。",
"function_call": {
"name": "image_gen",
"arguments": '{"prompt": "cute black cat"}',
},
}
)
messages.append(
{
"role": "function",
"name": "image_gen",
"content": '{"image_url": "https://image.pollinations.ai/prompt/cute%20black%20cat"}',
}
)
call_qwen(messages, functions)
def test_3():
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location.",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
messages = [
{
"role": "user",
# Note: The current version of Qwen-7B-Chat (as of 2023.08) performs okay with Chinese tool-use prompts,
# but performs terribly when it comes to English tool-use prompts, due to a mistake in data collecting.
"content": "波士顿天气如何?",
}
]
call_qwen(messages, functions)
messages.append(
{
"role": "assistant",
"content": None,
"function_call": {
"name": "get_current_weather",
"arguments": '{"location": "Boston, MA"}',
},
},
)
messages.append(
{
"role": "function",
"name": "get_current_weather",
"content": '{"temperature": "22", "unit": "celsius", "description": "Sunny"}',
}
)
call_qwen(messages, functions)
def test_4():
from langchain.chat_models import ChatOpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
llm = ChatOpenAI(
model_name="Qwen",
openai_api_base="http://localhost:8000/v1",
openai_api_key="EMPTY",
streaming=False,
)
tools = load_tools(
["arxiv"],
)
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
# TODO: The performance is okay with Chinese prompts, but not so good when it comes to English.
agent_chain.run("查一下论文 1605.08386 的信息")
if __name__ == "__main__":
print("### Test Case 1 - No Function Calling (普通问答、无函数调用) ###")
test_1()
print("### Test Case 2 - Use Qwen-Style Functions (函数调用,千问格式) ###")
test_2()
print("### Test Case 3 - Use GPT-Style Functions (函数调用,GPT格式) ###")
test_3()
print("### Test Case 4 - Use LangChain (接入Langchain) ###")
test_4()