forked from IQuOD/AutoQC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyse-results.py
563 lines (519 loc) · 24.2 KB
/
analyse-results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import csv, getopt, json, pandas, sys, ast
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from util import dbutils, main
def read_qc_groups(filename='qctest_groups.csv'):
# Read a csv file containing information on QC test groups.
# The program returns a dictionary containing the information
# from csv file.
csvfile = open(filename)
groupinfo = csv.reader(csvfile)
# Create empty lists for each type of group.
groupdefinition = {'Remove above reject':[],
'Remove below reject':[],
'Remove rejected levels':[],
'Remove profile':[],
'Optional':[],
'At least one from group':{}}
# Fill out the lists.
for i, spec in enumerate(groupinfo):
if i == 0: continue # Miss the header line.
if spec[1] in groupdefinition:
# For the 'at least one from group' rule we maintain lists of
# the tests in each group.
if spec[1] == 'At least one from group':
if spec[0] in groupdefinition[spec[1]]:
groupdefinition[spec[1]][spec[0]].append(spec[2])
else:
groupdefinition[spec[1]][spec[0]] = [spec[2]]
else:
# Other rules have a list of the tests that fall into them.
groupdefinition[spec[1]].append(spec[2])
else:
raise NameError('Rule not recognised: ', spec)
csvfile.close()
return groupdefinition
def return_cost(costratio, tpr, fpr):
# Return cost function.
# Inputs are:
# costratio - 2 element iterable used to define the cost function; roughly
# they define the minimum required gradient of the ROC curve
# with the first giving the gradient at the start, the second
# the gradient at the end. Suggested values: to get a compromise
# set of QC tests, define costratio = [2.5, 1.0]; to get a
# conservative set of QC tests, define costratio = [10.0, 10.0].
# tpr - True positive rate to get the cost for.
# fpr - False positive rate to get the cost for.
# Returns: the cost function value.
costratio1 = costratio[0]
costratio2 = costratio[1]
theta1 = np.arctan(costratio1)
theta2 = np.arctan(costratio2)
cost1 = (100.0 - tpr) * np.cos(theta1) + fpr * np.sin(theta1)
cost2 = (100.0 - tpr) * np.cos(theta2) + fpr * np.sin(theta2)
cost = (100.0 - tpr) / 100.0 * cost1 + tpr / 100.0 * cost2
return cost
def find_roc(table,
targetdb,
costratio=[2.5, 1.0],
filter_on_wire_break_test=False,
filter_from_file_spec=True,
enforce_types_of_check=True,
n_profiles_to_analyse=np.iinfo(np.int32).max,
n_combination_iterations=0,
with_reverses=False,
effectiveness_ratio=2.0,
improve_threshold=1.0,
verbose=True,
plot_roc=True,
write_roc=True,
mark_training=False):
'''
Generates a ROC curve from the database data in table by maximising the gradient
of the ROC curve. It will combine different tests together and invert the results
of tests if requested.
costratio - two element iterable that defines how the ROC curve is developed. Higher
numbers gives a ROC curve with lower false rates; the two elements allows
control over the shape of the ROC curve near the start and end. E.g. [2.5, 1.0].
filter_on_wire_break_test - filter out the impact of XBT wire breaks from results.
filter_from_file_spec - use specification from file to choose filtering.
enforce_types_of_check - use specification from file on particular types of checks to use.
n_profiles_to_analyse - restrict the number of profiles extracted from the database.
n_combination_iterations - AND tests together; restricted to max of 2 as otherwise
number of tests gets very large.
with_reverses - if True, a copy of each test with inverted results is made.
effectiveness_ratio - will give a warning if TPR / FPR is less than this value.
improve_threshold - ignores tests if they do not results in a change in true positive
rate (in %) of at least this amount.
verbose - if True, will print a lot of messages to screen.
plot_roc - if True, will save an image of the ROC to roc.png.
write_roc - if True, will save the ROC data to roc.json.
'''
# Read QC test specifications if required.
groupdefinition = {}
if filter_from_file_spec or enforce_types_of_check:
groupdefinition = read_qc_groups()
# Read data from database into a pandas data frame.
df = dbutils.db_to_df(table = table,
targetdb = targetdb,
filter_on_wire_break_test = filter_on_wire_break_test,
filter_on_tests = groupdefinition,
n_to_extract = n_profiles_to_analyse,
pad=2,
XBTbelow=True)
# Drop nondiscriminating tests
nondiscrim = []
cols = list(df.columns)
for c in cols:
if len(pandas.unique(df[c])) == 1:
nondiscrim.append(c)
if verbose: print(c + ' is nondiscriminating and will be removed')
cols = [t for t in cols if t not in nondiscrim]
df = df[cols]
print(list(df))
testNames = df.columns[2:].values.tolist()
if verbose:
print('Number of profiles is: ', len(df.index))
print('Number of quality checks to process is: ', len(testNames))
# mark chosen profiles as part of the training set
all_uids = main.dbinteract('SELECT uid from ' + table + ';', targetdb=targetdb)
if mark_training:
for uid in all_uids:
uid = uid[0]
is_training = int(uid in df['uid'].astype(int).to_numpy())
query = "UPDATE " + table + " SET training=" + str(is_training) + " WHERE uid=" + str(uid) + ";"
main.dbinteract(query, targetdb=targetdb)
# Convert to numpy structures and make inverse versions of tests if required.
# Any test with true positive rate of zero is discarded.
truth = df['Truth'].to_numpy()
tests = []
names = []
tprs = []
fprs = []
if with_reverses:
reverselist = [False, True]
else:
reverselist = [False]
for i, testname in enumerate(testNames):
for reversal in reverselist:
results = df[testname].to_numpy() != reversal
tpr, fpr, fnr, tnr = main.calcRates(results, truth)
if tpr > 0.0:
tests.append(results)
if reversal:
addtext = 'r'
else:
addtext = ''
names.append(addtext + testname)
tprs.append(tpr)
fprs.append(fpr)
del df # No further need for the data frame.
if verbose: print('Number of quality checks after adding reverses and removing zero TPR was: ', len(names))
# Create storage to hold the roc curve.
cumulative = truth.copy()
cumulative[:] = False
currenttpr = 0.0
currentfpr = 0.0
r_fprs = [] # The false positive rate for each ROC point.
r_tprs = [] # True positive rate for each ROC point.
testcomb = [] # The QC test that was added at each ROC point.
groupsel = [] # Set to True if the ROC point was from an enforced group.
# Pre-select some tests if required.
if enforce_types_of_check:
if verbose: print('Enforcing types of checks')
while len(groupdefinition['At least one from group']) > 0:
bestchoice = ''
bestgroup = ''
bestdist = np.sqrt(100.0**2 + 100.0**2)
besti = -1
for key in groupdefinition['At least one from group']:
for testname in groupdefinition['At least one from group'][key]:
# Need to check that the test exists - it may have been removed
# if it was non-discriminating.
if testname in names:
for itest, name in enumerate(names):
if name == testname:
cumulativenew = np.logical_or(cumulative, tests[itest])
tpr, fpr, fnr, tnr = main.calcRates(cumulativenew, truth)
newdist = return_cost(costratio, tpr, fpr)
print(' ', tpr, fpr, newdist, bestdist, testname)
if newdist == bestdist:
if verbose:
print(' ' + bestchoice + ' and ' + testname + ' have the same results and the first is kept')
elif newdist < bestdist:
bestchoice = testname
bestdist = newdist
besti = itest
bestgroup = key
else:
if verbose: print(' ' + testname + ' not found and so was skipped')
if bestchoice == '':
print('WARNING no suitable tests in group "' + key + '", skipping')
del groupdefinition['At least one from group'][key]
else:
if verbose: print(' ' + bestchoice + ' was selected from group ' + bestgroup)
if fprs[besti] > 0:
if tprs[besti] / fprs[besti] < effectiveness_ratio:
print('WARNING - ' + bestchoice + ' TPR / FPR is below the effectiveness ratio limit: ', tprs[besti] / fprs[besti], effectiveness_ratio)
cumulative = np.logical_or(cumulative, tests[besti])
currenttpr, currentfpr, fnr, tnr = main.calcRates(cumulative, truth)
testcomb.append(names[besti])
r_fprs.append(currentfpr)
r_tprs.append(currenttpr)
groupsel.append(True)
# Once a test has been added, it can be deleted so that it is not considered again.
del names[besti]
del tests[besti]
del fprs[besti]
del tprs[besti]
del groupdefinition['At least one from group'][bestgroup]
print('ROC point from enforced group: ', currenttpr, currentfpr, testcomb[-1], bestgroup)
# Make combinations of the single checks and store.
assert n_combination_iterations <= 2, 'Setting n_combination_iterations > 2 results in a very large number of combinations'
if verbose: print('Starting construction of combinations with number of iterations: ', n_combination_iterations)
for its in range(n_combination_iterations):
ntests = len(names)
for i in range(ntests - 1):
if verbose: print('Processing iteration ', its + 1, ' out of ', n_combination_iterations, ' step ', i + 1, ' out of ', ntests - 1, ' with number of tests now ', len(names))
for j in range(i + 1, ntests):
# Create the name for this combination.
newname = ('&').join(sorted((names[i] + '&' + names[j]).split('&')))
if newname in names: continue # Do not keep multiple copies of the same combination.
results = np.logical_and(tests[i], tests[j])
tpr, fpr, fnr, tnr = main.calcRates(results, truth)
if tpr > 0.0:
tests.append(results)
tprs.append(tpr)
fprs.append(fpr)
names.append(newname)
if verbose: print('Completed generation of tests, now constructing roc from number of tests: ', len(names))
# Create roc.
used = np.zeros(len(names), dtype=bool)
overallbest = return_cost(costratio, tpr, fpr)
keepgoing = True
while keepgoing:
keepgoing = False
besti = -1
bestcost = overallbest
bestncomb = 100000
bestdtpr = 0
bestdfpr = 100000
for i in range(len(names)):
if used[i]: continue
cumulativenew = np.logical_or(cumulative, tests[i])
tpr, fpr, fnr, tnr = main.calcRates(cumulativenew, truth)
dtpr = tpr - currenttpr
dfpr = fpr - currentfpr
newcost = return_cost(costratio, tpr, fpr)
newbest = False
if newcost <= bestcost and dtpr >= improve_threshold and dtpr > 0.0:
# If cost is better than found previously, use it else if it is
# the same then decide if to use it or not.
if newcost < bestcost:
newbest = True
elif dtpr >= bestdtpr:
if dtpr > bestdtpr:
newbest = True
elif len(names[i].split('&')) < bestncomb:
newbest = True
if newbest:
besti = i
bestcost = newcost
bestncomb = len(names[i].split('&'))
bestdtpr = dtpr
bestdfpr = dfpr
if besti >= 0:
keepgoing = True
used[besti] = True
overallbest = bestcost
cumulative = np.logical_or(cumulative, tests[besti])
currenttpr, currentfpr, fnr, tnr = main.calcRates(cumulative, truth)
testcomb.append(names[besti])
r_fprs.append(currentfpr)
r_tprs.append(currenttpr)
groupsel.append(False)
print('ROC point: ', currenttpr, currentfpr, names[besti], overallbest)
if plot_roc:
plt.plot(r_fprs, r_tprs, 'k')
for i in range(len(r_fprs)):
if groupsel[i]:
colour = 'r'
else:
colour = 'b'
plt.plot(r_fprs[i], r_tprs[i], colour + 'o')
plt.xlim(0, 100)
plt.ylim(0, 100)
plt.xlabel('False positive rate (%)')
plt.ylabel('True positive rate (%)')
plt.savefig(plot_roc)
plt.close()
if write_roc:
f = open(write_roc, 'w')
r = {}
r['tpr'] = r_tprs
r['fpr'] = r_fprs
r['tests'] = testcomb
r['groupsel'] = groupsel
json.dump(r, f)
f.close()
def find_roc_ordered(table,
targetdb,
costratio=[2.5, 1.0],
n_profiles_to_analyse=np.iinfo(np.int32).max,
improve_threshold=1.0,
verbose=True,
plot_roc=True,
write_roc=True,
levelbased=False,
mark_training=False):
'''
Finds optimal tests to include in a QC set.
table - the database table to read;
targetdb - the datable file;
n_profiles_to_analyse - how many profiles to read from the database;
improve_threshold - how much improvement in true positive rate is needed
for a test to be accepted once all groups have been done;
verbose - controls whether messages on progress are output;
plot_roc - controls is a plot is generated;
write_roc - controls whether a text file is generated;
levelbased - controls whether the database is re-read on each iteration of the
processing; if False then profiles are not considered again
once an accepted test has flagged them; if True, the levels that
are flagged are removed so other problems in the profile can be
used to determine the best quality control checks to use.
'''
# Check that the options make sense.
if levelbased:
assert mark_training == False, 'Cannot use mark_training with levelbased'
# Define the order of tests.
ordering = ['Location', 'Range', 'Climatology', 'Increasing depth', 'Constant values',
'Spike or step', 'Gradient', 'Density']
# Read QC test specifications.
groupdefinition = read_qc_groups()
# Create results list.
qclist = []
keepgoing = True
iit = 0
while keepgoing:
if iit < len(ordering):
grouptofind = ordering[iit]
else:
grouptofind = 'any'
if verbose: print('-- Iteration ', iit + 1, ' to find test of type ', grouptofind)
if (iit == 0) or levelbased:
if verbose: print('---- Running database read')
# Read data from database into a pandas data frame.
df = dbutils.db_to_df(table = table,
targetdb = targetdb,
filter_on_wire_break_test = False,
filter_on_tests = groupdefinition,
n_to_extract = n_profiles_to_analyse,
pad=2,
XBTbelow=True)
# mark chosen profiles as part of the training set
if mark_training:
all_uids = main.dbinteract('SELECT uid from ' + table + ';', targetdb=targetdb)
for uid in all_uids:
uid = uid[0]
is_training = int(uid in df['uid'].astype(int).to_numpy())
query = "UPDATE " + table + " SET training=" + str(is_training) + " WHERE uid=" + str(uid) + ";"
main.dbinteract(query, targetdb=targetdb)
# Drop nondiscriminating tests i.e. those that flag all or none
# of the profiles.
nondiscrim = []
cols = list(df.columns)
for c in cols:
if len(pandas.unique(df[c])) == 1:
nondiscrim.append(c)
if verbose: print(c + ' is nondiscriminating and will be removed')
cols = [t for t in cols if t not in nondiscrim]
df = df[cols]
testNames = df.columns[2:].values.tolist()
# Convert to numpy structures and save copy if first iteration.
truth = df['Truth'].to_numpy()
tests = []
for i, tn in enumerate(testNames):
results = df[tn].to_numpy()
tests.append(results)
cumulative = truth.copy()
cumulative[:] = False
if iit == 0:
alltruth = df['Truth'].to_numpy()
alltests = []
for i, tn in enumerate(testNames):
results = df[tn].to_numpy()
alltests.append(results)
allnames = testNames.copy()
del df # No further need for the data frame.
# Try to select a QC check to add to the set.
if verbose: print('---- Selecting the QC check')
if grouptofind == 'any':
testnamestosearch = testNames
else:
testnamestosearch = groupdefinition['At least one from group'][grouptofind]
# Find the best choice from all the QC tests in this group.
bestchoice = ''
bestcost = return_cost(costratio, 0.0, 100.0)
for tn in testnamestosearch:
if tn in qclist: continue
for itest, name in enumerate(testNames):
if name == tn:
cumulativenew = np.logical_or(cumulative, tests[itest])
tpr, fpr, fnr, tnr = main.calcRates(cumulativenew, truth)
newcost = return_cost(costratio, tpr, fpr)
if verbose: print(' ', tpr, fpr, newcost, bestcost, name)
if newcost == bestcost:
if verbose:
print(' ' + bestchoice + ' and ' + name + ' have the same results and the first is kept')
elif newcost < bestcost:
bestchoice = name
bestcost = newcost
besti = itest
besttpr = tpr
# If selecting from any test, need to ensure that it is worth keeping.
if grouptofind == 'any' and bestchoice != '':
ctpr, cfpr, cfnr, ctnr = main.calcRates(cumulative, truth)
currentcost = return_cost(costratio, ctpr, cfpr)
if (currentcost < bestcost or
(besttpr - ctpr) < improve_threshold):
bestchoice = ''
# Record the choice that is made.
if bestchoice == '':
if verbose: print('WARNING: no suitable tests in group "' + grouptofind + '", skipping')
if grouptofind == 'any':
if verbose: print('End of QC test selection')
keepgoing = False
else:
if verbose: print(' ' + bestchoice + ' was selected from group ' + grouptofind)
cumulative = np.logical_or(cumulative, tests[besti])
qclist.append(bestchoice)
groupdefinition['Remove rejected levels'].append(bestchoice)
# Increment iit to move on to the next group.
iit += 1
# Create roc.
cumulative = alltruth.copy()
cumulative[:] = False
r_fprs = []
r_tprs = []
for tn in qclist:
found = False
for itest, name in enumerate(allnames):
if tn == name:
cumulative = np.logical_or(cumulative, alltests[itest])
tpr, fpr, fnr, tnr = main.calcRates(cumulative, alltruth)
r_fprs.append(fpr)
r_tprs.append(tpr)
print('ROC point: ', tpr, fpr, tn)
found = True
assert found, 'Error in constructing ROC'
if plot_roc:
plt.plot(r_fprs, r_tprs, 'k')
for i in range(len(r_fprs)):
colour = 'b'
plt.plot(r_fprs[i], r_tprs[i], colour + 'o')
plt.xlim(0, 100)
plt.ylim(0, 100)
plt.xlabel('False positive rate (%)')
plt.ylabel('True positive rate (%)')
plt.savefig(plot_roc)
plt.close()
if write_roc:
f = open(write_roc, 'w')
r = {}
r['tpr'] = r_tprs
r['fpr'] = r_fprs
r['tests'] = qclist
json.dump(r, f)
f.close()
if __name__ == '__main__':
# parse options
options, remainder = getopt.getopt(sys.argv[1:], 't:d:n:c:o:p:hslm')
targetdb = 'iquod.db'
dbtable = 'iquod'
outfile = False
plotfile = False
samplesize = None
costratio = [5.0, 5.0]
ordered = False
levelbased = False
mark_training = False
for opt, arg in options:
if opt == '-d':
dbtable = arg
if opt == '-t':
targetdb = arg
if opt == '-n':
samplesize = int(arg)
if opt == '-c':
costratio = ast.literal_eval(arg)
if opt == '-o':
outfile = arg
if opt == '-p':
plotfile = arg
if opt == '-s':
ordered = True
if opt == '-l':
levelbased = True
if opt == '-m':
mark_training = True
if opt == '-h':
print('usage:')
print('-d <db table name to read from>')
print('-t <name of db file>')
print('-n <number of profiles to consider>')
print('-c <cost ratio array>')
print('-s Find QC tests in a predefined sequence')
print('-l If -s, remove only QCed out levels not profiles on each step')
print('-m If -m, profiles used to generate the ROC will be marked')
print('-o <filename to write json results out to>')
print('-p <filename to write roc plot out to>')
print('-h print this help message and quit')
if samplesize is None:
print('please provide a sample size to consider with the -n flag')
print('-h to print usage')
if ordered:
find_roc_ordered(table=dbtable, targetdb=targetdb, n_profiles_to_analyse=samplesize, costratio=costratio, plot_roc=plotfile, write_roc=outfile, levelbased=levelbased, mark_training=mark_training)
else:
find_roc(table=dbtable, targetdb=targetdb, n_profiles_to_analyse=samplesize, costratio=costratio, plot_roc=plotfile, write_roc=outfile, mark_training=mark_training)