From 4a412dae5f01d669eda2a04a101510a6516b44a2 Mon Sep 17 00:00:00 2001 From: HuStmpHrrr Date: Sat, 23 Nov 2024 11:31:13 -0800 Subject: [PATCH] change mcltt to mctt --- theories/Core/Completeness/EqualityCases.v | 16 ++--- theories/Core/Semantic/PER/Definitions.v | 4 +- theories/Core/Semantic/PER/Lemmas.v | 4 +- .../Soundness/LogicalRelation/CoreLemmas.v | 6 +- theories/Core/Syntactic/Presup.v | 58 +++++++++---------- 5 files changed, 44 insertions(+), 44 deletions(-) diff --git a/theories/Core/Completeness/EqualityCases.v b/theories/Core/Completeness/EqualityCases.v index 946bda5..74243e7 100644 --- a/theories/Core/Completeness/EqualityCases.v +++ b/theories/Core/Completeness/EqualityCases.v @@ -30,7 +30,7 @@ Proof. per_univ_elem_econstructor; mauto 3; try solve_refl. Qed. #[export] -Hint Resolve rel_exp_eq_cong : mcltt. +Hint Resolve rel_exp_eq_cong : mctt. Lemma valid_exp_eq : forall {Γ i A M1 M2}, {{ Γ ⊨ A : Type@i }} -> @@ -40,7 +40,7 @@ Lemma valid_exp_eq : forall {Γ i A M1 M2}, Proof. mauto. Qed. #[export] -Hint Resolve valid_exp_eq : mcltt. +Hint Resolve valid_exp_eq : mctt. Lemma rel_exp_refl_cong : forall {Γ i A A' M M'}, {{ Γ ⊨ A ≈ A' : Type@i }} -> @@ -67,7 +67,7 @@ Proof. symmetry; mauto 3. Qed. #[export] -Hint Resolve rel_exp_refl_cong : mcltt. +Hint Resolve rel_exp_refl_cong : mctt. Lemma rel_exp_eq_sub : forall {Γ σ Δ i A M1 M2}, {{ Γ ⊨s σ : Δ }} -> @@ -97,7 +97,7 @@ Proof. Qed. #[export] -Hint Resolve rel_exp_eq_sub : mcltt. +Hint Resolve rel_exp_eq_sub : mctt. Lemma rel_exp_refl_sub : forall {Γ σ Δ i A M}, {{ Γ ⊨s σ : Δ }} -> @@ -126,7 +126,7 @@ Proof. Qed. #[export] -Hint Resolve rel_exp_refl_sub : mcltt. +Hint Resolve rel_exp_refl_sub : mctt. Lemma rel_exp_eqrec_sub : forall {Γ σ Δ i A M1 M2 j B BR N}, {{ Γ ⊨s σ : Δ }} -> @@ -208,7 +208,7 @@ Proof. It might be better to do some optimization first. *) Admitted. #[export] -Hint Resolve rel_exp_eqrec_sub : mcltt. +Hint Resolve rel_exp_eqrec_sub : mctt. Lemma rel_exp_eqrec_cong : forall {Γ i A A' M1 M1' M2 M2' j B B' BR BR' N N'}, {{ Γ ⊨ A : Type@i }} -> @@ -226,7 +226,7 @@ Lemma rel_exp_eqrec_cong : forall {Γ i A A' M1 M1' M2 M2' j B B' BR BR' N N'}, Proof. Admitted. #[export] -Hint Resolve rel_exp_eqrec_cong : mcltt. +Hint Resolve rel_exp_eqrec_cong : mctt. Lemma rel_exp_eqrec_beta : forall {Γ i A M j B BR}, {{ Γ ⊨ A : Type@i }} -> @@ -239,4 +239,4 @@ Lemma rel_exp_eqrec_beta : forall {Γ i A M j B BR}, Proof. Admitted. #[export] -Hint Resolve rel_exp_eqrec_beta : mcltt. +Hint Resolve rel_exp_eqrec_beta : mctt. diff --git a/theories/Core/Semantic/PER/Definitions.v b/theories/Core/Semantic/PER/Definitions.v index a1e6d2d..bfae7a2 100644 --- a/theories/Core/Semantic/PER/Definitions.v +++ b/theories/Core/Semantic/PER/Definitions.v @@ -82,7 +82,7 @@ Variant per_eq (point_rel : relation domain) m1 m2' : relation domain := {{ Dom ⇑ a n ≈ ⇑ a' n' ∈ per_eq point_rel m1 m2' }} } . #[export] -Hint Constructors per_eq : mcltt. +Hint Constructors per_eq : mctt. Variant per_ne : relation domain := | per_ne_neut : @@ -319,7 +319,7 @@ Variant cons_per_ctx_env tail_rel (head_rel : forall {ρ ρ'} (equiv_ρ_ρ' : {{ {{ Dom ^(ρ 0) ≈ ^(ρ' 0) ∈ head_rel equiv_ρ_drop_ρ'_drop }} -> {{ Dom ρ ≈ ρ' ∈ cons_per_ctx_env tail_rel (@head_rel) }} }. #[export] -Hint Constructors cons_per_ctx_env : mcltt. +Hint Constructors cons_per_ctx_env : mctt. Inductive per_ctx_env : relation env -> ctx -> ctx -> Prop := | per_ctx_env_nil : diff --git a/theories/Core/Semantic/PER/Lemmas.v b/theories/Core/Semantic/PER/Lemmas.v index 3477df6..bf198d1 100644 --- a/theories/Core/Semantic/PER/Lemmas.v +++ b/theories/Core/Semantic/PER/Lemmas.v @@ -184,7 +184,7 @@ Proof with mautosolve 3. Qed. #[export] -Hint Resolve per_eq_sym : mcltt. +Hint Resolve per_eq_sym : mctt. Lemma per_eq_trans : forall point_rel m1 m2 n n' n'', PER point_rel -> @@ -198,7 +198,7 @@ Proof with mautosolve 3. Qed. #[export] -Hint Resolve per_eq_trans : mcltt. +Hint Resolve per_eq_trans : mctt. #[export] Instance per_eq_PER {point_rel m1 m2} {Hpoint : PER point_rel} : PER (per_eq point_rel m1 m2). diff --git a/theories/Core/Soundness/LogicalRelation/CoreLemmas.v b/theories/Core/Soundness/LogicalRelation/CoreLemmas.v index 8150c44..0af7310 100644 --- a/theories/Core/Soundness/LogicalRelation/CoreLemmas.v +++ b/theories/Core/Soundness/LogicalRelation/CoreLemmas.v @@ -679,7 +679,7 @@ Proof. Qed. #[local] - Hint Resolve glu_nat_resp_per_nat : mcltt. + Hint Resolve glu_nat_resp_per_nat : mctt. #[local] Ltac resp_per_IH := @@ -965,7 +965,7 @@ Proof. destruct_rel_mod_eval. simplify_evals. deepexec H1 ltac:(fun H => pose proof H). - autorewrite with mcltt in *. + autorewrite with mctt in *. mauto 3. - simpl_glu_rel. @@ -1043,7 +1043,7 @@ Proof. split; [mauto 3 |]. intros. saturate_weakening_escape. - autorewrite with mcltt. + autorewrite with mctt. mauto 3. - simpl_glu_rel. econstructor; repeat split; mauto 3; diff --git a/theories/Core/Syntactic/Presup.v b/theories/Core/Syntactic/Presup.v index e4ecaf7..d2c8d5e 100644 --- a/theories/Core/Syntactic/Presup.v +++ b/theories/Core/Syntactic/Presup.v @@ -33,7 +33,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_natrec_cong_right : mcltt. +Hint Resolve presup_exp_eq_natrec_cong_right : mctt. Lemma presup_exp_eq_natrec_sub_left : forall {Γ σ Δ i A MZ MS M}, {{ ⊢ Γ }} -> @@ -58,7 +58,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_natrec_sub_left : mcltt. +Hint Resolve presup_exp_eq_natrec_sub_left : mctt. Lemma presup_exp_eq_natrec_sub_right : forall {Γ σ Δ i A MZ MS M}, {{ ⊢ Γ }} -> @@ -112,7 +112,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_natrec_sub_right : mcltt. +Hint Resolve presup_exp_eq_natrec_sub_right : mctt. Lemma presup_exp_eq_beta_succ_right : forall {Γ i A MZ MS M}, {{ ⊢ Γ, ℕ }} -> @@ -156,7 +156,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_beta_succ_right : mcltt. +Hint Resolve presup_exp_eq_beta_succ_right : mctt. Lemma presup_exp_eq_fn_cong_right : forall {Γ i A A' j B M'}, {{ ⊢ Γ }} -> @@ -179,7 +179,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_fn_cong_right : mcltt. +Hint Resolve presup_exp_eq_fn_cong_right : mctt. Lemma presup_exp_eq_fn_sub_right : forall {Γ σ Δ i A j B M}, {{ ⊢ Γ }} -> @@ -204,7 +204,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_fn_sub_right : mcltt. +Hint Resolve presup_exp_eq_fn_sub_right : mctt. Lemma presup_exp_eq_app_cong_right : forall {Γ i A B M' N N'}, {{ ⊢ Γ }} -> @@ -227,7 +227,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_app_cong_right : mcltt. +Hint Resolve presup_exp_eq_app_cong_right : mctt. Lemma presup_exp_eq_app_sub_left : forall {Γ σ Δ i A B M N}, {{ ⊢ Γ }} -> @@ -258,7 +258,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_app_sub_left : mcltt. +Hint Resolve presup_exp_eq_app_sub_left : mctt. Lemma presup_exp_eq_app_sub_right : forall {Γ σ Δ i A B M N}, {{ ⊢ Γ }} -> @@ -287,7 +287,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_app_sub_right : mcltt. +Hint Resolve presup_exp_eq_app_sub_right : mctt. Lemma presup_exp_eq_pi_eta_right : forall {Γ i A B M}, {{ ⊢ Γ }} -> @@ -312,7 +312,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_pi_eta_right : mcltt. +Hint Resolve presup_exp_eq_pi_eta_right : mctt. Lemma presup_exp_eq_prop_eq_var0 : forall {Γ i A}, {{ Γ ⊢ A : Type@i }} -> @@ -326,7 +326,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_var0 : mcltt. +Hint Resolve presup_exp_eq_prop_eq_var0 : mctt. Lemma presup_exp_eq_prop_eq_var1 : forall {Γ i A}, {{ Γ ⊢ A : Type@i }} -> @@ -340,7 +340,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_var1 : mcltt. +Hint Resolve presup_exp_eq_prop_eq_var1 : mctt. Lemma presup_exp_eq_prop_eq_wf : forall {Γ i A}, {{ Γ ⊢ A : Type@i }} -> @@ -356,7 +356,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_wf : mcltt. +Hint Resolve presup_exp_eq_prop_eq_wf : mctt. Lemma presup_exp_eq_prop_eq_sub_helper2 : forall {Γ σ Δ i A M1 M2}, {{ Γ ⊢s σ : Δ }} -> @@ -377,7 +377,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_sub_helper2 : mcltt. +Hint Resolve presup_exp_eq_prop_eq_sub_helper2 : mctt. Lemma presup_exp_eq_prop_eq_typ_sub2_eq : forall {Γ σ Δ i A M1 M2}, {{ Γ ⊢s σ : Δ }} -> @@ -407,7 +407,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_typ_sub2_eq : mcltt. +Hint Resolve presup_exp_eq_prop_eq_typ_sub2_eq : mctt. Lemma presup_exp_eq_prop_eq_sub_helper3 : forall {Γ σ Δ i A M1 M2 N}, {{ Γ ⊢s σ : Δ }} -> @@ -426,7 +426,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_sub_helper3 : mcltt. +Hint Resolve presup_exp_eq_prop_eq_sub_helper3 : mctt. Lemma presup_exp_eq_prop_eq_id_sub_helper2 : forall {Γ i A M1 M2}, {{ Γ ⊢ A : Type@i }} -> @@ -447,7 +447,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_id_sub_helper2 : mcltt. +Hint Resolve presup_exp_eq_prop_eq_id_sub_helper2 : mctt. Lemma presup_exp_eq_prop_eq_typ_id_sub2_eq : forall {Γ i A M1 M2}, {{ Γ ⊢ A : Type@i }} -> @@ -472,7 +472,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_typ_id_sub2_eq : mcltt. +Hint Resolve presup_exp_eq_prop_eq_typ_id_sub2_eq : mctt. Lemma presup_exp_eq_prop_eq_id_sub_helper3 : forall {Γ i A M1 M2 N}, {{ Γ ⊢ A : Type@i }} -> @@ -490,7 +490,7 @@ Proof. Qed. #[export] -Hint Resolve presup_exp_eq_prop_eq_id_sub_helper3 : mcltt. +Hint Resolve presup_exp_eq_prop_eq_id_sub_helper3 : mctt. Lemma presup_exp_eq_refl_sub_right : forall {Γ σ Δ i A M}, {{ ⊢ Γ }} -> @@ -509,7 +509,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_refl_sub_right : mcltt. +Hint Resolve presup_exp_eq_refl_sub_right : mctt. Lemma presup_exp_eq_eqrec_sub_left : forall {Γ σ Δ i A M1 M2 j B N BR}, {{ ⊢ Γ }} -> @@ -554,7 +554,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_eqrec_sub_left : mcltt. +Hint Resolve presup_exp_eq_eqrec_sub_left : mctt. Lemma presup_exp_eq_eqrec_sub_right : forall {Γ σ Δ i A M1 M2 j B N BR}, {{ ⊢ Γ }} -> @@ -881,7 +881,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_eqrec_sub_right : mcltt. +Hint Resolve presup_exp_eq_eqrec_sub_right : mctt. Lemma presup_exp_eq_refl_cong_right : forall {Γ i A A' M M'}, {{ ⊢ Γ }} -> @@ -899,7 +899,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_refl_cong_right : mcltt. +Hint Resolve presup_exp_eq_refl_cong_right : mctt. Lemma presup_exp_eq_eqrec_cong_right : forall {Γ i A A' M1 M1' M2 M2' j B B' BR BR' N N'}, {{ ⊢ Γ }} -> @@ -1029,7 +1029,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_eqrec_cong_right : mcltt. +Hint Resolve presup_exp_eq_eqrec_cong_right : mctt. Lemma presup_exp_eq_eqrec_beta_right : forall {Γ i A M j B BR}, {{ ⊢ Γ }} -> @@ -1137,7 +1137,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_eqrec_beta_right : mcltt. +Hint Resolve presup_exp_eq_eqrec_beta_right : mctt. Lemma presup_exp_eq_var_0_sub_left : forall {Γ σ Δ i A M}, {{ ⊢ Γ }} -> @@ -1154,7 +1154,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_var_0_sub_left : mcltt. +Hint Resolve presup_exp_eq_var_0_sub_left : mctt. Lemma presup_exp_eq_var_S_sub_left : forall {Γ σ Δ i A M B x}, {{ ⊢ Γ }} -> @@ -1173,7 +1173,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_var_S_sub_left : mcltt. +Hint Resolve presup_exp_eq_var_S_sub_left : mctt. Lemma presup_exp_eq_sub_cong_right : forall {Γ σ σ' Δ i A M M'}, {{ ⊢ Δ }} -> @@ -1193,7 +1193,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_sub_cong_right : mcltt. +Hint Resolve presup_exp_eq_sub_cong_right : mctt. Lemma presup_exp_eq_sub_compose_right : forall {Γ τ Γ' σ Γ'' i A M}, {{ ⊢ Γ }} -> @@ -1210,7 +1210,7 @@ Proof. Qed. #[local] -Hint Resolve presup_exp_eq_sub_compose_right : mcltt. +Hint Resolve presup_exp_eq_sub_compose_right : mctt. #[local] Ltac gen_presup_IH presup_exp_eq presup_sub_eq presup_subtyp H :=