From 9cb1b819b891c3274cf1692c97e14df6134c4ad5 Mon Sep 17 00:00:00 2001 From: Junyoung/Clare Jang Date: Wed, 12 Jun 2024 15:55:51 -0400 Subject: [PATCH] Add inversion lemmas --- .../Completeness/Consequences/Inversions.v | 99 ++++++++++++ theories/Core/Syntactic/CoreInversions.v | 150 ++++++++++++++++++ theories/Core/Syntactic/Corollaries.v | 17 +- theories/Core/Syntactic/CtxEq.v | 8 + theories/Core/Syntactic/System/Lemmas.v | 10 ++ theories/LibTactics.v | 3 + theories/_CoqProject | 2 + 7 files changed, 275 insertions(+), 14 deletions(-) create mode 100644 theories/Core/Completeness/Consequences/Inversions.v create mode 100644 theories/Core/Syntactic/CoreInversions.v diff --git a/theories/Core/Completeness/Consequences/Inversions.v b/theories/Core/Completeness/Consequences/Inversions.v new file mode 100644 index 00000000..b1fe4ddf --- /dev/null +++ b/theories/Core/Completeness/Consequences/Inversions.v @@ -0,0 +1,99 @@ +From Coq Require Import RelationClasses. +From Mcltt Require Import Base LibTactics. +From Mcltt.Core Require Import Completeness Completeness.FundamentalTheorem Completeness.LogicalRelation Semantic.Realizability. +From Mcltt.Core Require Export SystemOpt CoreInversions. +Import Domain_Notations. + +Theorem not_exp_eq_typ_nat : forall Γ i j, + ~ {{ Γ ⊢ ℕ ≈ Type@i : Type@j }}. +Proof. + intros ** ?. + assert {{ Γ ⊨ ℕ ≈ Type@i : Type@j }} as [env_relΓ] by mauto using completeness_fundamental_exp_eq. + destruct_conjs. + assert (exists p p', initial_env Γ p /\ initial_env Γ p' /\ {{ Dom p ≈ p' ∈ env_relΓ }}) by mauto using per_ctx_then_per_env_initial_env. + destruct_conjs. + functional_initial_env_rewrite_clear. + (on_all_hyp: destruct_rel_by_assumption env_relΓ). + destruct_by_head rel_typ. + invert_rel_typ_body. + destruct_by_head rel_exp. + invert_rel_typ_body. + destruct_conjs. + match_by_head1 per_univ_elem invert_per_univ_elem. +Qed. + +#[export] +Hint Resolve not_exp_eq_typ_nat : mcltt. + +Corollary wf_zero_inversion : forall Γ A, + {{ Γ ⊢ zero : A }} -> + exists i, {{ Γ ⊢ ℕ ≈ A : Type@i }}. +Proof with mautosolve 4. + intros * H. + dependent induction H; try mautosolve. + - (* wf_conv *) + assert (exists i : nat, {{ Γ ⊢ ℕ ≈ A : Type@i }}) as [j] by eauto. + mauto using lift_exp_eq_max_left, lift_exp_eq_max_right. + - (* wf_cumu *) + assert (exists j : nat, {{ Γ ⊢ ℕ ≈ Type@i : Type@j }}) as [j contra] by eauto. + contradict contra... +Qed. + +Corollary wf_succ_inversion : forall Γ A M, + {{ Γ ⊢ succ M : A }} -> + {{ Γ ⊢ M : ℕ }} /\ exists i, {{ Γ ⊢ ℕ ≈ A : Type@i }}. +Proof with mautosolve. + intros * H. + dependent induction H; try (split; mautosolve). + - (* wf_conv *) + assert ({{ Γ ⊢ M : ℕ }} /\ exists i : nat, {{ Γ ⊢ ℕ ≈ A : Type@i }}) as [] by eauto. + destruct_conjs. + mauto 6 using lift_exp_eq_max_left, lift_exp_eq_max_right. + - (* wf_cumu *) + assert ({{ Γ ⊢ M : ℕ }} /\ exists j : nat, {{ Γ ⊢ ℕ ≈ Type@i : Type@j }}) as [? [? contra]] by eauto. + contradict contra... +Qed. + +Theorem not_exp_eq_typ_pi : forall Γ i A B j, + ~ {{ Γ ⊢ Π A B ≈ Type@i : Type@j }}. +Proof. + intros ** ?. + assert {{ Γ ⊨ Π A B ≈ Type@i : Type@j }} as [env_relΓ] by mauto using completeness_fundamental_exp_eq. + destruct_conjs. + assert (exists p p', initial_env Γ p /\ initial_env Γ p' /\ {{ Dom p ≈ p' ∈ env_relΓ }}) by mauto using per_ctx_then_per_env_initial_env. + destruct_conjs. + functional_initial_env_rewrite_clear. + (on_all_hyp: destruct_rel_by_assumption env_relΓ). + destruct_by_head rel_typ. + invert_rel_typ_body. + destruct_by_head rel_exp. + invert_rel_typ_body. + destruct_conjs. + match_by_head1 per_univ_elem invert_per_univ_elem. +Qed. + +#[export] +Hint Resolve not_exp_eq_typ_pi : mcltt. + +Corollary wf_fn_inversion : forall {Γ A M C}, + {{ Γ ⊢ λ A M : C }} -> + exists i B, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }} /\ {{ Γ ⊢ Π A B ≈ C : Type@i }}. +Proof with mautosolve 4. + intros * H. + dependent induction H. + - (* wf_fn *) + gen_presups. + exvar nat ltac:(fun i => assert {{ Γ ⊢ A : Type @ i }} by (eapply lift_exp_max_left; eauto)). + exvar nat ltac:(fun i => assert {{ Γ, A ⊢ B : Type @ i }} by (eapply lift_exp_max_right; eauto)). + do 2 eexists. + repeat split... + - (* wf_conv *) + specialize (IHwf_exp _ _ eq_refl) as [i0 [? [? []]]]. + exists (max i i0). + eexists. + repeat split; + mauto 4 using lift_exp_max_right, lift_exp_eq_max_left, lift_exp_eq_max_right. + - (* wf_cumu *) + specialize (IHwf_exp _ _ eq_refl) as [? [? [? [? contra]]]]. + contradict contra... +Qed. diff --git a/theories/Core/Syntactic/CoreInversions.v b/theories/Core/Syntactic/CoreInversions.v new file mode 100644 index 00000000..0966da67 --- /dev/null +++ b/theories/Core/Syntactic/CoreInversions.v @@ -0,0 +1,150 @@ +From Coq Require Import Setoid. +From Mcltt Require Import Base LibTactics. +From Mcltt.Core Require Export SystemOpt. +Import Syntax_Notations. + +Lemma wf_univ_inversion : forall {Γ i A}, + {{ Γ ⊢ Type@i : A }} -> + {{ Γ ⊢ Type@(S i) ⊆ A }}. +Proof. + intros * H. + dependent induction H; mautosolve. +Qed. + +#[export] +Hint Resolve wf_univ_inversion : mcltt. + +Lemma wf_nat_inversion : forall Γ A, + {{ Γ ⊢ ℕ : A }} -> + {{ Γ ⊢ Type@0 ⊆ A }}. +Proof. + intros * H. + assert (forall i, 0 <= i) by lia. + dependent induction H; mautosolve 4. +Qed. + +#[export] +Hint Resolve wf_nat_inversion : mcltt. + +Lemma wf_natrec_inversion : forall Γ A M A' MZ MS, + {{ Γ ⊢ rec M return A' | zero -> MZ | succ -> MS end : A }} -> + {{ Γ ⊢ M : ℕ }} /\ {{ Γ ⊢ MZ : A'[Id,,zero] }} /\ {{ Γ, ℕ, A' ⊢ MS : A'[Wk∘Wk,,succ(#1)] }} /\ {{ Γ ⊢ A'[Id,,M] ⊆ A }}. +Proof with mautosolve 4. + intros * H. + pose (A0 := A). + dependent induction H; + try (specialize (IHwf_exp _ _ _ _ eq_refl); destruct_conjs; repeat split; mautosolve 4). + assert {{ Γ ⊢s Id : Γ }} by mauto 3. + repeat split... +Qed. + +#[export] +Hint Resolve wf_natrec_inversion : mcltt. + +Lemma wf_pi_inversion : forall {Γ A B C}, + {{ Γ ⊢ Π A B : C }} -> + exists i, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }} /\ {{ Γ ⊢ Type@i ⊆ C }}. +Proof. + intros * H. + dependent induction H; assert {{ ⊢ Γ }} by mauto 3; try solve [eexists; mauto 4]; + specialize (IHwf_exp _ _ eq_refl); destruct_conjs; eexists; repeat split; mauto 3. +Qed. + +#[export] +Hint Resolve wf_pi_inversion : mcltt. + +Lemma wf_app_inversion : forall {Γ M N C}, + {{ Γ ⊢ M N : C }} -> + exists A B, {{ Γ ⊢ M : Π A B }} /\ {{ Γ ⊢ N : A }} /\ {{ Γ ⊢ B[Id,,N] ⊆ C }}. +Proof with mautosolve 4. + intros * H. + dependent induction H; + try solve [do 2 eexists; repeat split; mauto 4]; + specialize (IHwf_exp _ _ eq_refl); destruct_conjs; do 2 eexists; repeat split... +Qed. + +#[export] +Hint Resolve wf_app_inversion : mcltt. + +Lemma wf_vlookup_inversion : forall {Γ x A}, + {{ Γ ⊢ #x : A }} -> + exists A', {{ #x : A' ∈ Γ }} /\ {{ Γ ⊢ A' ⊆ A }}. +Proof with mautosolve 4. + intros * H. + dependent induction H; + try (specialize (IHwf_exp _ eq_refl); destruct_conjs; eexists; split; mautosolve 4). + assert (exists i, {{ Γ ⊢ A : Type@i }}) as []... +Qed. + +#[export] +Hint Resolve wf_vlookup_inversion : mcltt. + +Lemma wf_exp_sub_inversion : forall {Γ M σ A}, + {{ Γ ⊢ M[σ] : A }} -> + exists Δ A', {{ Γ ⊢s σ : Δ }} /\ {{ Δ ⊢ M : A' }} /\ {{ Γ ⊢ A'[σ] ⊆ A }}. +Proof with mautosolve 4. + intros * H. + dependent induction H; + try (specialize (IHwf_exp _ _ eq_refl); destruct_conjs; do 2 eexists; repeat split; mautosolve 4). + gen_presups. + do 2 eexists. + repeat split... +Qed. + +#[export] +Hint Resolve wf_exp_sub_inversion : mcltt. + +(* [wf_conv] and [wf_cumu] do not give useful inversions *) + +Lemma wf_sub_id_inversion : forall Γ Δ, + {{ Γ ⊢s Id : Δ }} -> + {{ ⊢ Γ ≈ Δ }}. +Proof. + intros * H. + dependent induction H; mauto. +Qed. + +#[export] +Hint Resolve wf_sub_id_inversion : mcltt. + +Lemma wf_sub_weaken_inversion : forall {Γ Δ}, + {{ Γ ⊢s Wk : Δ }} -> + exists A, {{ ⊢ Γ ≈ Δ, A }}. +Proof with mautosolve 4. + intros * H. + dependent induction H; mauto. + specialize (IHwf_sub eq_refl). + destruct_conjs. + eexists. + gen_presups. + etransitivity... +Qed. + +#[export] +Hint Resolve wf_sub_weaken_inversion : mcltt. + +Lemma wf_sub_compose_inversion : forall {Γ1 σ1 σ2 Γ3}, + {{ Γ1 ⊢s σ1 ∘ σ2 : Γ3 }} -> + exists Γ2, {{ Γ1 ⊢s σ2 : Γ2 }} /\ {{ Γ2 ⊢s σ1 : Γ3 }}. +Proof with mautosolve 4. + intros * H. + dependent induction H; mauto. + specialize (IHwf_sub _ _ eq_refl). + destruct_conjs. + eexists. + repeat split; mauto. +Qed. + +#[export] +Hint Resolve wf_sub_compose_inversion : mcltt. + +Lemma wf_sub_extend_inversion : forall {Γ σ M Δ}, + {{ Γ ⊢s σ,,M : Δ }} -> + exists Δ' A', {{ Γ ⊢s σ : Δ' }} /\ {{ Γ ⊢ M : A' }}. +Proof with mautosolve 4. + intros * H. + dependent induction H... +Qed. + +#[export] +Hint Resolve wf_sub_extend_inversion : mcltt. diff --git a/theories/Core/Syntactic/Corollaries.v b/theories/Core/Syntactic/Corollaries.v index 06a3eb81..bcf8024b 100644 --- a/theories/Core/Syntactic/Corollaries.v +++ b/theories/Core/Syntactic/Corollaries.v @@ -1,19 +1,8 @@ From Coq Require Import Setoid. From Mcltt Require Import Base LibTactics. -From Mcltt.Core Require Export SystemOpt. +From Mcltt.Core Require Export SystemOpt CoreInversions. Import Syntax_Notations. -Corollary invert_id : forall Γ Δ, - {{ Γ ⊢s Id : Δ }} -> - {{ ⊢ Γ ≈ Δ }}. -Proof. - intros * H. - dependent induction H; mauto. -Qed. - -#[export] -Hint Resolve invert_id : mcltt. - Corollary sub_id_typ : forall Γ M A, {{ Γ ⊢ M : A }} -> {{ Γ ⊢ M : A [ Id ] }}. @@ -30,8 +19,8 @@ Corollary invert_sub_id : forall Γ M A, {{ Γ ⊢ M [ Id ] : A }} -> {{ Γ ⊢ M : A }}. Proof. - intros * H. - dependent induction H; mauto. + intros * [? [? [?%wf_sub_id_inversion []]]]%wf_exp_sub_inversion. + mauto. Qed. #[export] diff --git a/theories/Core/Syntactic/CtxEq.v b/theories/Core/Syntactic/CtxEq.v index eb83a815..08bf2e3c 100644 --- a/theories/Core/Syntactic/CtxEq.v +++ b/theories/Core/Syntactic/CtxEq.v @@ -107,3 +107,11 @@ Qed. #[export] Hint Resolve ctx_eq_trans : mcltt. + +#[export] +Instance wf_ctx_PER : PER wf_ctx_eq. +Proof. + split. + - eauto using ctx_eq_sym. + - eauto using ctx_eq_trans. +Qed. diff --git a/theories/Core/Syntactic/System/Lemmas.v b/theories/Core/Syntactic/System/Lemmas.v index 214389f6..da40661e 100644 --- a/theories/Core/Syntactic/System/Lemmas.v +++ b/theories/Core/Syntactic/System/Lemmas.v @@ -711,6 +711,16 @@ Qed. #[export] Hint Resolve sub_eq_q_sigma_compose_weak_weak_extend_succ_var_1 : mcltt. +Fact typ_subsumption_refl : forall {Γ A i}, + {{ Γ ⊢ A : Type@i }} -> + {{ Γ ⊢ A ⊆ A }}. +Proof. + mauto. +Qed. + +#[export] +Hint Resolve typ_subsumption_refl : mcltt. + Lemma typ_subsumption_ge : forall {Γ i j}, {{ ⊢ Γ }} -> i <= j -> diff --git a/theories/LibTactics.v b/theories/LibTactics.v index a8e897ec..27b1aaf3 100644 --- a/theories/LibTactics.v +++ b/theories/LibTactics.v @@ -206,6 +206,9 @@ Tactic Notation "mauto" int_or_var(pow) "using" uconstr(use) := Tactic Notation "mauto" int_or_var(pow) "using" uconstr(use1) "," uconstr(use2) := eauto pow using use1, use2 with mcltt core. +Tactic Notation "mauto" int_or_var(pow) "using" uconstr(use1) "," uconstr(use2) "," uconstr(use3) := + eauto pow using use1, use2, use3 with mcltt core. + Tactic Notation "mauto" int_or_var(pow) "using" uconstr(use1) "," uconstr(use2) "," uconstr(use3) "," uconstr(use4) := eauto pow using use1, use2, use3, use4 with mcltt core. diff --git a/theories/_CoqProject b/theories/_CoqProject index df44ad9d..b890e0fe 100644 --- a/theories/_CoqProject +++ b/theories/_CoqProject @@ -4,6 +4,7 @@ ./Core/Axioms.v ./Core/Base.v +./Core/Completeness/Consequences/Inversions.v ./Core/Completeness/ContextCases.v ./Core/Completeness/FunctionCases.v ./Core/Completeness/FundamentalTheorem.v @@ -31,6 +32,7 @@ ./Core/Semantic/Readback/Lemmas.v ./Core/Semantic/Realizability.v ./Core/Semantic/NbE.v +./Core/Syntactic/CoreInversions.v ./Core/Syntactic/Corollaries.v ./Core/Syntactic/CtxEq.v ./Core/Syntactic/Presup.v