diff --git a/theories/Core/Semantic/PERLemmas.v b/theories/Core/Semantic/PERLemmas.v index 82737baa..f07f2aa0 100644 --- a/theories/Core/Semantic/PERLemmas.v +++ b/theories/Core/Semantic/PERLemmas.v @@ -1,5 +1,4 @@ -From Coq Require Import Lia PeanoNat Relations.Relation_Definitions RelationClasses Program.Equality. -From Equations Require Import Equations. +From Coq Require Import Lia PeanoNat Relation_Definitions RelationClasses. From Mcltt Require Import Axioms Base Domain Evaluate EvaluateLemmas LibTactics PER Readback ReadbackLemmas Syntax System. (* Lemma rel_mod_eval_ex_pull : *) @@ -64,6 +63,71 @@ Qed. #[export] Hint Resolve per_bot_trans : mcltt. +Lemma PER_per_bot : PER per_bot. +Proof with solve [mauto]. + econstructor... +Qed. + +Lemma per_top_sym : forall m n, + {{ Dom m ≈ n ∈ per_top }} -> + {{ Dom n ≈ m ∈ per_top }}. +Proof with solve [mauto]. + intros * H s. + destruct (H s) as [? []]... +Qed. + +#[export] +Hint Resolve per_top_sym : mcltt. + +Lemma per_top_trans : forall m n l, + {{ Dom m ≈ n ∈ per_top }} -> + {{ Dom n ≈ l ∈ per_top }} -> + {{ Dom m ≈ l ∈ per_top }}. +Proof with solve [mauto]. + intros * Hmn Hnl s. + destruct (Hmn s) as [? []]. + destruct (Hnl s) as [? []]. + functional_read_rewrite_clear... +Qed. + +#[export] +Hint Resolve per_top_trans : mcltt. + +Lemma PER_per_top : PER per_top. +Proof with solve [mauto]. + econstructor... +Qed. + +Lemma per_top_typ_sym : forall m n, + {{ Dom m ≈ n ∈ per_top_typ }} -> + {{ Dom n ≈ m ∈ per_top_typ }}. +Proof with solve [mauto]. + intros * H s. + destruct (H s) as [? []]... +Qed. + +#[export] +Hint Resolve per_top_typ_sym : mcltt. + +Lemma per_top_typ_trans : forall m n l, + {{ Dom m ≈ n ∈ per_top_typ }} -> + {{ Dom n ≈ l ∈ per_top_typ }} -> + {{ Dom m ≈ l ∈ per_top_typ }}. +Proof with solve [mauto]. + intros * Hmn Hnl s. + destruct (Hmn s) as [? []]. + destruct (Hnl s) as [? []]. + functional_read_rewrite_clear... +Qed. + +#[export] +Hint Resolve per_top_typ_trans : mcltt. + +Lemma PER_per_top_typ : PER per_top_typ. +Proof with solve [mauto]. + econstructor... +Qed. + Lemma per_nat_sym : forall m n, {{ Dom m ≈ n ∈ per_nat }} -> {{ Dom n ≈ m ∈ per_nat }}. @@ -154,7 +218,7 @@ Lemma per_univ_elem_sym : forall i A B R, per_univ_elem i A B R -> per_univ_elem i B A R /\ (forall a b, {{ Dom a ≈ b ∈ R }} <-> {{ Dom b ≈ a ∈ R }}). Proof. - intros. induction H using per_univ_elem_ind; subst. + induction 1 using per_univ_elem_ind; subst. - split. + apply per_univ_elem_core_univ'; trivial. + intros. split; intros []. @@ -177,7 +241,6 @@ Proof. functional_eval_rewrite_clear. per_univ_elem_right_irrel_rewrite. assumption. - + assert (forall a b : domain, (forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app (out_rel c c' equiv_c_c') a c b c') -> (forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app (out_rel c c' equiv_c_c') b c a c')).