diff --git a/theories/Core/Soundness/FunctionCases.v b/theories/Core/Soundness/FunctionCases.v index a42bcbb..6c39f92 100644 --- a/theories/Core/Soundness/FunctionCases.v +++ b/theories/Core/Soundness/FunctionCases.v @@ -47,7 +47,7 @@ Proof. intros. assert {{ Δ ⊢s σ : Γ }} by mauto 4. split; mauto 3. - applying_glu_rel_judge. + apply_glu_rel_judge. rename m into a. assert {{ Γ ⊨ Π A B : Type@i }} as [env_relΓ]%rel_exp_of_typ_inversion1 by mauto 3 using completeness_fundamental_exp. assert {{ Γ, A ⊨ B : Type@i }} as [env_relΓA]%rel_exp_of_typ_inversion1 by mauto 3 using completeness_fundamental_exp. diff --git a/theories/Core/Soundness/LogicalRelation/Lemmas.v b/theories/Core/Soundness/LogicalRelation/Lemmas.v index 0c1b6b4..d7733d4 100644 --- a/theories/Core/Soundness/LogicalRelation/Lemmas.v +++ b/theories/Core/Soundness/LogicalRelation/Lemmas.v @@ -650,7 +650,7 @@ Proof. handle_functional_glu_univ_elem. trivial. Qed. - +xb Lemma glu_univ_elem_per_subtyp_trm_conv : forall {i j k a a' P P' El El' Γ A A' M m}, {{ Sub a <: a' at i }} -> {{ DG a ∈ glu_univ_elem j ↘ P ↘ El }} -> @@ -1227,12 +1227,13 @@ Proof. eapply glu_univ_elem_exp_conv; revgoals; mauto 3. Qed. +#[global] Ltac invert_glu_rel_exp H := (unshelve eapply (glu_rel_exp_clean_inversion2 _ _) in H; shelve_unifiable; [eassumption | eassumption |]; simpl in H) + (unshelve eapply (glu_rel_exp_clean_inversion1 _) in H; shelve_unifiable; [eassumption |]; destruct H as []) - + (inversion H; subst). + + (inversion H as [? [? [? ?]]]; subst). Lemma glu_rel_exp_to_wf_exp : forall {Γ A M}, @@ -1352,7 +1353,8 @@ Ltac unify_glu_univ_lvl i := fail_if_dup; repeat unify_glu_univ_lvl1 i. -Ltac applying_glu_rel_judge := +Ltac apply_glu_rel_judge := + destruct_glu_rel_typ_with_sub; destruct_glu_rel_exp_with_sub; destruct_glu_rel_sub_with_sub; simplify_evals; diff --git a/theories/Core/Soundness/SubtypingCases.v b/theories/Core/Soundness/SubtypingCases.v index 3f88be3..6abdda9 100644 --- a/theories/Core/Soundness/SubtypingCases.v +++ b/theories/Core/Soundness/SubtypingCases.v @@ -54,18 +54,58 @@ Qed. #[export] Hint Resolve glu_rel_sub_subtyp : mctt. + +#[local] +Lemma glu_rel_exp_conv' : forall {Γ M A A' i}, + {{ Γ ⊩ M : A }} -> + {{ Γ ⊢ A ≈ A' : Type@i }} -> (** proof trick, will discharge. see the next lemma. *) + {{ Γ ⊢ A ≈ A' : Type@i }} -> + {{ Γ ⊩ M : A' }}. +Proof. + intros * [? [? [k ?]]] [env_relΓ [? [? ?]]]%completeness_fundamental_exp_eq ?. + econstructor; split; [eassumption |]. + exists (max i k); intros. + assert {{ Δ ⊢s σ : Γ }} by mauto 4. + + destruct_glu_rel_exp_with_sub. + assert {{ Dom ρ ≈ ρ ∈ env_relΓ }} by (eapply glu_ctx_env_per_env; mauto). + (on_all_hyp: destruct_rel_by_assumption env_relΓ). + destruct_by_head rel_typ. + match_by_head eval_exp ltac:(fun H => directed dependent destruction H). + destruct_by_head rel_exp. + saturate_refl. + invert_per_univ_elems. + apply_equiv_left. + destruct_all. + handle_per_univ_elem_irrel. + assert (i <= max i k) by lia. + assert (k <= max i k) by lia. + assert {{ Δ ⊢ A'[σ] ≈ A[σ] : Type@(max i k) }} by mauto 4. + eapply mk_glu_rel_exp_with_sub''; intuition mauto using per_univ_elem_cumu_max_left, per_univ_elem_cumu_max_right. + bulky_rewrite. + eapply glu_univ_elem_exp_cumu_ge; try eassumption. + eapply glu_univ_elem_resp_per_univ; eauto. + symmetry. mauto. +Qed. + Lemma glu_rel_exp_conv : forall {Γ M A A' i}, {{ Γ ⊩ M : A }} -> - {{ Γ ⊩ A' : Type@i }} -> {{ Γ ⊢ A ≈ A' : Type@i }} -> {{ Γ ⊩ M : A' }}. Proof. - mauto 3. + eauto using glu_rel_exp_conv'. Qed. #[export] Hint Resolve glu_rel_exp_conv : mctt. +Add Parametric Morphism i Γ M : (glu_rel_exp Γ M) + with signature (wf_exp_eq Γ {{{Type@i}}}) ==> iff as foo. +Proof. + split; mauto 3. +Qed. + + Lemma glu_rel_sub_conv : forall {Γ σ Δ Δ'}, {{ Γ ⊩s σ : Δ }} -> {{ ⊩ Δ' }} -> diff --git a/theories/Core/Soundness/UniverseCases.v b/theories/Core/Soundness/UniverseCases.v index a64d42e..a8f1c86 100644 --- a/theories/Core/Soundness/UniverseCases.v +++ b/theories/Core/Soundness/UniverseCases.v @@ -53,14 +53,15 @@ Proof. eapply glu_rel_exp_clean_inversion2 in HM; mauto 3. Qed. -Ltac invert_glu_rel_exp H ::= +#[local] + Ltac invert_glu_rel_exp_old H := + invert_glu_rel_exp H. + +#[global] + Ltac invert_glu_rel_exp H := (unshelve eapply (glu_rel_exp_clean_inversion2' _) in H; shelve_unifiable; [eassumption |]; simpl in H) - + (unshelve eapply (glu_rel_exp_clean_inversion2 _ _) in H; shelve_unifiable; [eassumption | eassumption |]; - simpl in H) - + (unshelve eapply (glu_rel_exp_clean_inversion1 _) in H; shelve_unifiable; [eassumption |]; - destruct H as []) - + (inversion H; subst). + + invert_glu_rel_exp_old H. Lemma glu_rel_exp_sub_typ : forall {Γ σ Δ i A}, {{ Γ ⊩s σ : Δ }} ->