diff --git a/theories/Core/Completeness/Consequences/Inversions.v b/theories/Core/Completeness/Consequences/Inversions.v index b1fe4ddf..8474be1d 100644 --- a/theories/Core/Completeness/Consequences/Inversions.v +++ b/theories/Core/Completeness/Consequences/Inversions.v @@ -1,30 +1,9 @@ From Coq Require Import RelationClasses. From Mcltt Require Import Base LibTactics. -From Mcltt.Core Require Import Completeness Completeness.FundamentalTheorem Completeness.LogicalRelation Semantic.Realizability. +From Mcltt.Core Require Import Completeness Semantic.Realizability Completeness.Consequences.Types. From Mcltt.Core Require Export SystemOpt CoreInversions. Import Domain_Notations. -Theorem not_exp_eq_typ_nat : forall Γ i j, - ~ {{ Γ ⊢ ℕ ≈ Type@i : Type@j }}. -Proof. - intros ** ?. - assert {{ Γ ⊨ ℕ ≈ Type@i : Type@j }} as [env_relΓ] by mauto using completeness_fundamental_exp_eq. - destruct_conjs. - assert (exists p p', initial_env Γ p /\ initial_env Γ p' /\ {{ Dom p ≈ p' ∈ env_relΓ }}) by mauto using per_ctx_then_per_env_initial_env. - destruct_conjs. - functional_initial_env_rewrite_clear. - (on_all_hyp: destruct_rel_by_assumption env_relΓ). - destruct_by_head rel_typ. - invert_rel_typ_body. - destruct_by_head rel_exp. - invert_rel_typ_body. - destruct_conjs. - match_by_head1 per_univ_elem invert_per_univ_elem. -Qed. - -#[export] -Hint Resolve not_exp_eq_typ_nat : mcltt. - Corollary wf_zero_inversion : forall Γ A, {{ Γ ⊢ zero : A }} -> exists i, {{ Γ ⊢ ℕ ≈ A : Type@i }}. @@ -32,8 +11,7 @@ Proof with mautosolve 4. intros * H. dependent induction H; try mautosolve. - (* wf_conv *) - assert (exists i : nat, {{ Γ ⊢ ℕ ≈ A : Type@i }}) as [j] by eauto. - mauto using lift_exp_eq_max_left, lift_exp_eq_max_right. + assert (exists i : nat, {{ Γ ⊢ ℕ ≈ A : Type@i }}) as [j] by eauto... - (* wf_cumu *) assert (exists j : nat, {{ Γ ⊢ ℕ ≈ Type@i : Type@j }}) as [j contra] by eauto. contradict contra... @@ -47,34 +25,12 @@ Proof with mautosolve. dependent induction H; try (split; mautosolve). - (* wf_conv *) assert ({{ Γ ⊢ M : ℕ }} /\ exists i : nat, {{ Γ ⊢ ℕ ≈ A : Type@i }}) as [] by eauto. - destruct_conjs. - mauto 6 using lift_exp_eq_max_left, lift_exp_eq_max_right. + destruct_conjs... - (* wf_cumu *) assert ({{ Γ ⊢ M : ℕ }} /\ exists j : nat, {{ Γ ⊢ ℕ ≈ Type@i : Type@j }}) as [? [? contra]] by eauto. contradict contra... Qed. -Theorem not_exp_eq_typ_pi : forall Γ i A B j, - ~ {{ Γ ⊢ Π A B ≈ Type@i : Type@j }}. -Proof. - intros ** ?. - assert {{ Γ ⊨ Π A B ≈ Type@i : Type@j }} as [env_relΓ] by mauto using completeness_fundamental_exp_eq. - destruct_conjs. - assert (exists p p', initial_env Γ p /\ initial_env Γ p' /\ {{ Dom p ≈ p' ∈ env_relΓ }}) by mauto using per_ctx_then_per_env_initial_env. - destruct_conjs. - functional_initial_env_rewrite_clear. - (on_all_hyp: destruct_rel_by_assumption env_relΓ). - destruct_by_head rel_typ. - invert_rel_typ_body. - destruct_by_head rel_exp. - invert_rel_typ_body. - destruct_conjs. - match_by_head1 per_univ_elem invert_per_univ_elem. -Qed. - -#[export] -Hint Resolve not_exp_eq_typ_pi : mcltt. - Corollary wf_fn_inversion : forall {Γ A M C}, {{ Γ ⊢ λ A M : C }} -> exists i B, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }} /\ {{ Γ ⊢ Π A B ≈ C : Type@i }}. diff --git a/theories/Core/Completeness/Consequences/Types.v b/theories/Core/Completeness/Consequences/Types.v new file mode 100644 index 00000000..6d1cb9ef --- /dev/null +++ b/theories/Core/Completeness/Consequences/Types.v @@ -0,0 +1,116 @@ +From Coq Require Import RelationClasses. +From Mcltt Require Import Base LibTactics. +From Mcltt.Core Require Import Completeness Completeness.FundamentalTheorem Completeness.LogicalRelation Semantic.Realizability. +From Mcltt.Core Require Export SystemOpt. +Import Domain_Notations. + +Lemma exp_eq_typ_implies_eq_level : forall {Γ i j k}, + {{ Γ ⊢ Type@i ≈ Type@j : Type@k }} -> + i = j. +Proof with mautosolve. + intros * H. + assert {{ Γ ⊨ Type@i ≈ Type@j : Type@k }} as [env_relΓ] by eauto using completeness_fundamental_exp_eq. + destruct_conjs. + assert (exists p p', initial_env Γ p /\ initial_env Γ p' /\ {{ Dom p ≈ p' ∈ env_relΓ }}) as [p [? [? []]]] by eauto using per_ctx_then_per_env_initial_env. + functional_initial_env_rewrite_clear. + (on_all_hyp: destruct_rel_by_assumption env_relΓ). + destruct_by_head rel_typ. + invert_rel_typ_body. + destruct_by_head rel_exp. + invert_rel_typ_body. + destruct_conjs. + match_by_head1 per_univ_elem invert_per_univ_elem. + reflexivity. +Qed. + +#[export] +Hint Resolve exp_eq_typ_implies_eq_level : mcltt. + +Theorem not_exp_eq_typ_nat : forall Γ i j, + ~ {{ Γ ⊢ ℕ ≈ Type@i : Type@j }}. +Proof. + intros ** ?. + assert {{ Γ ⊨ ℕ ≈ Type@i : Type@j }} as [env_relΓ] by mauto using completeness_fundamental_exp_eq. + destruct_conjs. + assert (exists p p', initial_env Γ p /\ initial_env Γ p' /\ {{ Dom p ≈ p' ∈ env_relΓ }}) by mauto using per_ctx_then_per_env_initial_env. + destruct_conjs. + functional_initial_env_rewrite_clear. + (on_all_hyp: destruct_rel_by_assumption env_relΓ). + destruct_by_head rel_typ. + invert_rel_typ_body. + destruct_by_head rel_exp. + invert_rel_typ_body. + destruct_conjs. + match_by_head1 per_univ_elem invert_per_univ_elem. +Qed. + +#[export] +Hint Resolve not_exp_eq_typ_nat : mcltt. + +Theorem not_exp_eq_typ_pi : forall Γ i A B j, + ~ {{ Γ ⊢ Π A B ≈ Type@i : Type@j }}. +Proof. + intros ** ?. + assert {{ Γ ⊨ Π A B ≈ Type@i : Type@j }} as [env_relΓ] by mauto using completeness_fundamental_exp_eq. + destruct_conjs. + assert (exists p p', initial_env Γ p /\ initial_env Γ p' /\ {{ Dom p ≈ p' ∈ env_relΓ }}) by mauto using per_ctx_then_per_env_initial_env. + destruct_conjs. + functional_initial_env_rewrite_clear. + (on_all_hyp: destruct_rel_by_assumption env_relΓ). + destruct_by_head rel_typ. + invert_rel_typ_body. + destruct_by_head rel_exp. + invert_rel_typ_body. + destruct_conjs. + match_by_head1 per_univ_elem invert_per_univ_elem. +Qed. + +#[export] +Hint Resolve not_exp_eq_typ_pi : mcltt. + +Lemma typ_subsumption_spec : forall {Γ A A'}, + {{ Γ ⊢ A ⊆ A' }} -> + {{ ⊢ Γ }} /\ exists j, {{ Γ ⊢ A ≈ A' : Type@j }} \/ exists i i', i < i' /\ {{ Γ ⊢ Type@i ≈ A : Type@j }} /\ {{ Γ ⊢ A' ≈ Type@i' : Type@j }}. +Proof. + intros * H. + dependent induction H; split; mauto 3. + - (* typ_subsumption_typ *) + eexists. + right. + do 2 eexists. + repeat split; revgoals; mauto. + - (* typ_subsumption_trans *) + destruct IHtyp_subsumption1 as [? [? [| [i1 [i1']]]]]; destruct IHtyp_subsumption2 as [? [? [| [i2 [i2']]]]]; + destruct_conjs; + only 1: mautosolve 4; + eexists; right; do 2 eexists. + + (* left & right *) + split; [eassumption |]. + solve [mauto using lift_exp_eq_max_left]. + + (* right & left *) + split; [eassumption |]. + solve [mauto using lift_exp_eq_max_right]. + + exvar nat ltac:(fun j => assert {{ Γ ⊢ Type@i2 ≈ Type@i1' : Type@j }} by mauto). + replace i2 with i1' in * by mauto. + split; [etransitivity; revgoals; eassumption |]. + mauto 4 using lift_exp_eq_max_left, lift_exp_eq_max_right. +Qed. + +#[export] +Hint Resolve typ_subsumption_spec : mcltt. + +Lemma typ_subsumption_typ_spec : forall {Γ i i'}, + {{ Γ ⊢ Type@i ⊆ Type@i' }} -> + {{ ⊢ Γ }} /\ i <= i'. +Proof with mautosolve. + intros * [? [j [| [i0 [i0']]]]]%typ_subsumption_spec. + - (* when lhs is equivalent to rhs *) + replace i with i' in *... + - (* when lhs is (strictly) subsumed by rhs *) + destruct_conjs. + (on_all_hyp: fun H => apply exp_eq_typ_implies_eq_level in H); subst. + split; [| lia]... +Qed. + +#[export] +Hint Resolve typ_subsumption_typ_spec : mcltt. diff --git a/theories/Core/Syntactic/CoreInversions.v b/theories/Core/Syntactic/CoreInversions.v index 0966da67..dca35677 100644 --- a/theories/Core/Syntactic/CoreInversions.v +++ b/theories/Core/Syntactic/CoreInversions.v @@ -3,29 +3,6 @@ From Mcltt Require Import Base LibTactics. From Mcltt.Core Require Export SystemOpt. Import Syntax_Notations. -Lemma wf_univ_inversion : forall {Γ i A}, - {{ Γ ⊢ Type@i : A }} -> - {{ Γ ⊢ Type@(S i) ⊆ A }}. -Proof. - intros * H. - dependent induction H; mautosolve. -Qed. - -#[export] -Hint Resolve wf_univ_inversion : mcltt. - -Lemma wf_nat_inversion : forall Γ A, - {{ Γ ⊢ ℕ : A }} -> - {{ Γ ⊢ Type@0 ⊆ A }}. -Proof. - intros * H. - assert (forall i, 0 <= i) by lia. - dependent induction H; mautosolve 4. -Qed. - -#[export] -Hint Resolve wf_nat_inversion : mcltt. - Lemma wf_natrec_inversion : forall Γ A M A' MZ MS, {{ Γ ⊢ rec M return A' | zero -> MZ | succ -> MS end : A }} -> {{ Γ ⊢ M : ℕ }} /\ {{ Γ ⊢ MZ : A'[Id,,zero] }} /\ {{ Γ, ℕ, A' ⊢ MS : A'[Wk∘Wk,,succ(#1)] }} /\ {{ Γ ⊢ A'[Id,,M] ⊆ A }}. @@ -41,18 +18,6 @@ Qed. #[export] Hint Resolve wf_natrec_inversion : mcltt. -Lemma wf_pi_inversion : forall {Γ A B C}, - {{ Γ ⊢ Π A B : C }} -> - exists i, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }} /\ {{ Γ ⊢ Type@i ⊆ C }}. -Proof. - intros * H. - dependent induction H; assert {{ ⊢ Γ }} by mauto 3; try solve [eexists; mauto 4]; - specialize (IHwf_exp _ _ eq_refl); destruct_conjs; eexists; repeat split; mauto 3. -Qed. - -#[export] -Hint Resolve wf_pi_inversion : mcltt. - Lemma wf_app_inversion : forall {Γ M N C}, {{ Γ ⊢ M N : C }} -> exists A B, {{ Γ ⊢ M : Π A B }} /\ {{ Γ ⊢ N : A }} /\ {{ Γ ⊢ B[Id,,N] ⊆ C }}. @@ -132,7 +97,7 @@ Proof with mautosolve 4. specialize (IHwf_sub _ _ eq_refl). destruct_conjs. eexists. - repeat split; mauto. + repeat split... Qed. #[export] diff --git a/theories/Core/Syntactic/CoreTypeInversions.v b/theories/Core/Syntactic/CoreTypeInversions.v new file mode 100644 index 00000000..97204661 --- /dev/null +++ b/theories/Core/Syntactic/CoreTypeInversions.v @@ -0,0 +1,54 @@ +From Coq Require Import Setoid. +From Mcltt Require Import Base LibTactics. +From Mcltt.Core Require Export System. +Import Syntax_Notations. + +Lemma wf_univ_inversion : forall {Γ i A}, + {{ Γ ⊢ Type@i : A }} -> + {{ Γ ⊢ Type@(S i) ⊆ A }}. +Proof. + intros * H. + dependent induction H; mautosolve. +Qed. + +#[export] +Hint Resolve wf_univ_inversion : mcltt. + +Lemma wf_nat_inversion : forall Γ A, + {{ Γ ⊢ ℕ : A }} -> + {{ Γ ⊢ Type@0 ⊆ A }}. +Proof. + intros * H. + assert (forall i, 0 <= i) by lia. + dependent induction H; mautosolve 4. +Qed. + +#[export] +Hint Resolve wf_nat_inversion : mcltt. + +Lemma wf_pi_inversion : forall {Γ A B C}, + {{ Γ ⊢ Π A B : C }} -> + exists i, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }} /\ {{ Γ ⊢ Type@i ⊆ C }}. +Proof. + intros * H. + dependent induction H; assert {{ ⊢ Γ }} by mauto 3; try solve [eexists; mauto 4]; + specialize (IHwf_exp _ _ eq_refl); destruct_conjs; eexists; repeat split; mauto 3. +Qed. + +#[export] +Hint Resolve wf_pi_inversion : mcltt. + +Corollary wf_pi_inversion' : forall {Γ A B i}, + {{ Γ ⊢ Π A B : Type@i }} -> + {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }}. +Proof with mautosolve 4. + intros * [j [? []]]%wf_pi_inversion. + assert {{ Γ, A ⊢s Wk : Γ }} by mauto 4. + assert {{ Γ, A ⊢ Type@j ⊆ Type@j[Wk] }} by mauto 4. + assert {{ Γ, A ⊢ Type@j[Wk] ⊆ Type@i[Wk] }} by mauto 4. + assert {{ Γ, A ⊢ Type@i[Wk] ⊆ Type@i }} by mauto 4. + assert {{ Γ, A ⊢ Type@j ⊆ Type@i }}... +Qed. + +#[export] +Hint Resolve wf_pi_inversion' : mcltt. diff --git a/theories/Core/Syntactic/System/Definitions.v b/theories/Core/Syntactic/System/Definitions.v index eaa961ba..dc6384f3 100644 --- a/theories/Core/Syntactic/System/Definitions.v +++ b/theories/Core/Syntactic/System/Definitions.v @@ -39,7 +39,7 @@ with wf_ctx_eq : ctx -> ctx -> Prop := where "⊢ Γ ≈ Γ'" := (wf_ctx_eq Γ Γ') (in custom judg) : type_scope with wf_exp : ctx -> exp -> typ -> Prop := -| wf_univ : +| wf_typ : `( {{ ⊢ Γ }} -> {{ Γ ⊢ Type@i : Type@(S i) }} ) | wf_nat : diff --git a/theories/Core/Syntactic/System/Lemmas.v b/theories/Core/Syntactic/System/Lemmas.v index da40661e..f374aeec 100644 --- a/theories/Core/Syntactic/System/Lemmas.v +++ b/theories/Core/Syntactic/System/Lemmas.v @@ -145,14 +145,6 @@ Qed. #[export] Hint Resolve presup_exp_eq_ctx : mcltt. -Lemma wf_pi_syntactic_inversion : forall {Γ A B C}, - {{ Γ ⊢ Π A B : C }} -> - exists i, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }}. -Proof. - intros * H. - dependent induction H; mauto 4. -Qed. - Lemma exp_eq_refl : forall {Γ M A}, {{ Γ ⊢ M : A }} -> {{ Γ ⊢ M ≈ M : A }}. Proof. mauto. @@ -169,6 +161,19 @@ Qed. #[export] Hint Resolve sub_eq_refl : mcltt. +Lemma exp_eq_trans_typ_max : forall {Γ i i' A A' A''}, + {{ Γ ⊢ A ≈ A' : Type@i }} -> + {{ Γ ⊢ A' ≈ A'' : Type@i' }} -> + {{ Γ ⊢ A ≈ A'' : Type@(max i i') }}. +Proof with mautosolve 4. + intros. + assert {{ Γ ⊢ A ≈ A' : Type@(max i i') }} by eauto using lift_exp_eq_max_left. + assert {{ Γ ⊢ A' ≈ A'' : Type@(max i i') }} by eauto using lift_exp_eq_max_right... +Qed. + +#[export] +Hint Resolve exp_eq_trans_typ_max : mcltt. + Lemma exp_sub_typ : forall {Δ Γ A σ i}, {{ Δ ⊢ A : Type@i }} -> {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊢ A[σ] : Type@i }}. Proof. mauto. @@ -711,6 +716,17 @@ Qed. #[export] Hint Resolve sub_eq_q_sigma_compose_weak_weak_extend_succ_var_1 : mcltt. +Lemma typ_subsumption_wf_ctx : forall {Γ A A'}, + {{ Γ ⊢ A ⊆ A' }} -> + {{ ⊢ Γ }}. +Proof. + intros * H. + dependent induction H; mauto. +Qed. + +#[export] +Hint Resolve typ_subsumption_wf_ctx : mcltt. + Fact typ_subsumption_refl : forall {Γ A i}, {{ Γ ⊢ A : Type@i }} -> {{ Γ ⊢ A ⊆ A }}. @@ -732,6 +748,22 @@ Qed. #[export] Hint Resolve typ_subsumption_ge : mcltt. +Lemma typ_subsumption_sub : forall {Γ σ Δ A A'}, + {{ Γ ⊢s σ : Δ }} -> + {{ Δ ⊢ A ⊆ A' }} -> + {{ Γ ⊢ A[σ] ⊆ A'[σ] }}. +Proof. + intros * Hsub H. + dependent induction H. + - etransitivity; [do 2 econstructor; eassumption |]. + etransitivity; mauto. + - mauto. + - mauto. +Qed. + +#[export] +Hint Resolve typ_subsumption_sub : mcltt. + Lemma wf_exp_respects_typ_subsumption : forall {Γ M A A'}, {{ Γ ⊢ M : A }} -> {{ Γ ⊢ A ⊆ A' }} -> diff --git a/theories/Core/Syntactic/SystemOpt.v b/theories/Core/Syntactic/SystemOpt.v index 976483fc..35c91f1d 100644 --- a/theories/Core/Syntactic/SystemOpt.v +++ b/theories/Core/Syntactic/SystemOpt.v @@ -1,6 +1,6 @@ From Coq Require Import Setoid. From Mcltt Require Import Base LibTactics. -From Mcltt.Core Require Export CtxEq Presup System. +From Mcltt.Core Require Export CtxEq Presup System CoreTypeInversions. Import Syntax_Notations. #[local] @@ -55,7 +55,7 @@ Corollary wf_app' : forall {Γ M N A B}, Proof. intros. gen_presups. - assert (exists i, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }}) as [? []] by eauto using wf_pi_syntactic_inversion. + exvar nat ltac:(fun i => assert ({{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }}) as [] by eauto using wf_pi_inversion'). mautosolve 3. Qed. @@ -167,7 +167,7 @@ Corollary wf_exp_eq_app_cong' : forall {Γ A B M M' N N'}, Proof. intros. gen_presups. - assert (exists i, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }}) as [? []] by eauto using wf_pi_syntactic_inversion. + exvar nat ltac:(fun i => assert ({{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }}) as [] by eauto using wf_pi_inversion'). mautosolve 3. Qed. @@ -184,7 +184,7 @@ Corollary wf_exp_eq_app_sub' : forall {Γ σ Δ A B M N}, Proof. intros. gen_presups. - assert (exists i, {{ Δ ⊢ A : Type@i }} /\ {{ Δ, A ⊢ B : Type@i }}) as [? []] by eauto using wf_pi_syntactic_inversion. + exvar nat ltac:(fun i => assert ({{ Δ ⊢ A : Type@i }} /\ {{ Δ, A ⊢ B : Type@i }}) as [] by eauto using wf_pi_inversion'). mautosolve 3. Qed. @@ -216,7 +216,7 @@ Corollary wf_exp_eq_pi_eta' : forall {Γ A B M}, Proof. intros. gen_presups. - assert (exists i, {{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }}) as [? []] by eauto using wf_pi_syntactic_inversion. + exvar nat ltac:(fun i => assert ({{ Γ ⊢ A : Type@i }} /\ {{ Γ, A ⊢ B : Type@i }}) as [] by eauto using wf_pi_inversion'). mautosolve 3. Qed. diff --git a/theories/_CoqProject b/theories/_CoqProject index b890e0fe..a8279ce2 100644 --- a/theories/_CoqProject +++ b/theories/_CoqProject @@ -4,6 +4,7 @@ ./Core/Axioms.v ./Core/Base.v +./Core/Completeness/Consequences/Types.v ./Core/Completeness/Consequences/Inversions.v ./Core/Completeness/ContextCases.v ./Core/Completeness/FunctionCases.v @@ -33,6 +34,7 @@ ./Core/Semantic/Realizability.v ./Core/Semantic/NbE.v ./Core/Syntactic/CoreInversions.v +./Core/Syntactic/CoreTypeInversions.v ./Core/Syntactic/Corollaries.v ./Core/Syntactic/CtxEq.v ./Core/Syntactic/Presup.v