From 938b79fbd49d922509927659d7fe5d807951fe7b Mon Sep 17 00:00:00 2001 From: "Junyoung/\"Clare\" Jang" Date: Tue, 1 Oct 2024 19:30:04 -0400 Subject: [PATCH] Prove more consequences --- .../Core/Completeness/Consequences/Types.v | 53 +++++- theories/Core/Semantic/Consequences.v | 152 ++++++++++++++++-- theories/Core/Semantic/NbE.v | 18 +++ theories/Core/Syntactic/System/Lemmas.v | 22 +++ 4 files changed, 229 insertions(+), 16 deletions(-) diff --git a/theories/Core/Completeness/Consequences/Types.v b/theories/Core/Completeness/Consequences/Types.v index 174cb72..48f3887 100644 --- a/theories/Core/Completeness/Consequences/Types.v +++ b/theories/Core/Completeness/Consequences/Types.v @@ -3,6 +3,7 @@ From Mcltt Require Import LibTactics. From Mcltt.Core Require Import Base. From Mcltt.Core Require Export Completeness. From Mcltt.Core.Semantic Require Import Realizability. +From Mcltt.Core.Syntactic Require Export CoreInversions. Import Domain_Notations. Lemma exp_eq_typ_implies_eq_level : forall {Γ i j k}, @@ -23,7 +24,6 @@ Proof with mautosolve. match_by_head1 per_univ_elem invert_per_univ_elem. reflexivity. Qed. - #[export] Hint Resolve exp_eq_typ_implies_eq_level : mcltt. @@ -31,10 +31,50 @@ Inductive is_typ_constr : typ -> Prop := | typ_is_typ_constr : forall i, is_typ_constr {{{ Type@i }}} | nat_is_typ_constr : is_typ_constr {{{ ℕ }}} | pi_is_typ_constr : forall A B, is_typ_constr {{{ Π A B }}} +| var_is_typ_constr : forall x, is_typ_constr {{{ #x }}} . +#[export] +Hint Constructors is_typ_constr : mcltt. +Theorem is_typ_constr_and_exp_eq_var_implies_eq_var : forall Γ A x i, + is_typ_constr A -> + {{ Γ ⊢ A ≈ #x : Type@i }} -> + A = {{{ #x }}}. +Proof. + intros * Histyp ?. + assert {{ Γ ⊨ A ≈ #x : Type@i }} as [env_relΓ] by mauto using completeness_fundamental_exp_eq. + destruct_conjs. + assert (exists p p', initial_env Γ p /\ initial_env Γ p' /\ {{ Dom p ≈ p' ∈ env_relΓ }}) by mauto using per_ctx_then_per_env_initial_env. + destruct_conjs. + functional_initial_env_rewrite_clear. + (on_all_hyp: destruct_rel_by_assumption env_relΓ). + destruct_by_head rel_typ. + invert_rel_typ_body. + destruct_by_head rel_exp. + gen_presups. + assert (exists A, {{ #x : A ∈ Γ }} /\ {{ Γ ⊢ A ⊆ Type@i }}) as [? [? _]] by mauto 2. + assert (exists a, ρ x = d{{{ ⇑! a (length Γ - x - 1) }}}) as [? Heq] by mauto 2. + destruct Histyp; + invert_rel_typ_body; + destruct_conjs; + rewrite Heq in *; + match_by_head1 per_univ_elem invert_per_univ_elem. + rename x1 into a0. + rename x2 into x1. + assert (exists A, {{ #x1 : A ∈ Γ }} /\ {{ Γ ⊢ A ⊆ Type@i }}) as [? [? _]] by mauto 2. + assert (exists a, ρ x1 = d{{{ ⇑! a (length Γ - x1 - 1) }}}) as [a1] by mauto 2. + assert (x0 < length Γ) by mauto 2. + assert (x1 < length Γ) by mauto 2. + f_equal. + enough (length Γ - x0 - 1 = length Γ - x1 - 1) by lia. + replace (ρ x1) with d{{{ ⇑! a1 (length Γ - x1 - 1) }}} in * by intuition. + autoinjections. + match_by_head1 per_bot ltac:(fun H => destruct (H (length Γ)) as [? []]). + match_by_head read_ne ltac:(fun H => directed dependent destruction H). + lia. +Qed. #[export] -Hint Constructors is_typ_constr : mcltt. +Hint Resolve is_typ_constr_and_exp_eq_var_implies_eq_var : mcltt. Theorem is_typ_constr_and_exp_eq_typ_implies_eq_typ : forall Γ A i j, is_typ_constr A -> @@ -55,9 +95,10 @@ Proof. invert_rel_typ_body; destruct_conjs; match_by_head1 per_univ_elem invert_per_univ_elem. - reflexivity. + - reflexivity. + - replace {{{ #x0 }}} with {{{ Type@i }}} by mauto 3 using is_typ_constr_and_exp_eq_var_implies_eq_var. + reflexivity. Qed. - #[export] Hint Resolve is_typ_constr_and_exp_eq_typ_implies_eq_typ : mcltt. @@ -80,7 +121,9 @@ Proof. invert_rel_typ_body; destruct_conjs; match_by_head1 per_univ_elem invert_per_univ_elem. - reflexivity. + - reflexivity. + - replace {{{ #x0 }}} with {{{ ℕ }}} by mauto 3 using is_typ_constr_and_exp_eq_var_implies_eq_var. + reflexivity. Qed. #[export] diff --git a/theories/Core/Semantic/Consequences.v b/theories/Core/Semantic/Consequences.v index d81c4cb..0eb11ef 100644 --- a/theories/Core/Semantic/Consequences.v +++ b/theories/Core/Semantic/Consequences.v @@ -4,6 +4,20 @@ From Mcltt.Core Require Export Soundness. From Mcltt.Core.Completeness.Consequences Require Export Types. Import Domain_Notations. +Lemma idempotent_nbe_ty : forall {Γ i A B C}, + {{ Γ ⊢ A : Type@i }} -> + nbe_ty Γ A B -> + nbe_ty Γ B C -> + B = C. +Proof. + intros. + assert {{ Γ ⊢ A ≈ B : Type@i }} as [? []]%completeness_ty by mauto 2 using soundness_ty'. + functional_nbe_rewrite_clear. + reflexivity. +Qed. +#[export] +Hint Resolve idempotent_nbe_ty : mcltt. + Lemma adjust_exp_eq_level : forall {Γ A A' i j}, {{ Γ ⊢ A ≈ A' : Type@i }} -> {{ Γ ⊢ A : Type@j }} -> @@ -42,7 +56,8 @@ Proof. match_by_head (@eq nf) ltac:(fun H => directed inversion H; subst; clear H). assert {{ Γ ⊢ A ≈ A' : Type@i }} by mauto. assert {{ ⊢ Γ, A ≈ Γ, A' }} by mauto. - split; mauto. + split; [mauto 3 |]. + etransitivity; mauto 4. Qed. Lemma nf_of_pi : forall {Γ M A B}, @@ -56,18 +71,133 @@ Proof. match_by_head1 read_nf ltac:(fun H => inversion_clear H). do 2 eexists; mauto. Qed. +#[export] +Hint Resolve nf_of_pi : mcltt. -Lemma idempotent_nbe_ty : forall {Γ i A B C}, - {{ Γ ⊢ A : Type@i }} -> - nbe_ty Γ A B -> - nbe_ty Γ B C -> - B = C. +Theorem canonical_form_of_pi : forall {M A B}, + {{ ⋅ ⊢ M : Π A B }} -> + exists W1 W2, nbe {{{ ⋅ }}} M {{{ Π A B }}} n{{{ λ W1 W2 }}}. +Proof. mauto. Qed. +#[export] +Hint Resolve canonical_form_of_pi : mcltt. + +Inductive canonical_nat : nf -> Prop := +| canonical_nat_zero : canonical_nat n{{{ zero }}} +| canonical_nat_succ : forall W, canonical_nat W -> canonical_nat n{{{ succ W }}} +. +#[export] +Hint Constructors canonical_nat : mcltt. + +Theorem canonical_form_of_nat : forall {M}, + {{ ⋅ ⊢ M : ℕ }} -> + exists W, nbe {{{ ⋅ }}} M {{{ ℕ }}} W /\ canonical_nat W. +Proof with mautosolve 4. + intros * [? []]%soundness. + eexists; split; [eassumption |]. + inversion_clear_by_head nbe. + invert_rel_typ_body. + match_by_head1 eval_exp ltac:(fun H => clear H). + gen M. + match_by_head1 read_nf ltac:(fun H => dependent induction H); + intros; mauto 3; + gen_presups. + - assert ({{ ⋅ ⊢ M : ℕ }} /\ {{ ⋅ ⊢ ℕ ⊆ ℕ }}) as [? _]... + - exfalso. + eapply no_closed_neutral... +Qed. +#[export] +Hint Resolve canonical_form_of_nat : mcltt. + +Lemma subtyp_spec : forall {Γ A B}, + {{ Γ ⊢ A ⊆ B }} -> + (exists k, {{ Γ ⊢ A ≈ B : Type@k }}) \/ + (exists i j, (exists k, {{ Γ ⊢ A ≈ Type@i : Type@k }}) /\ (exists k, {{ Γ ⊢ Type@j ≈ B : Type@k }}) /\ i <= j) \/ + (exists A1 A2 B1 B2, (exists k, {{ Γ ⊢ A ≈ Π A1 A2 : Type@k }}) /\ (exists k, {{ Γ ⊢ Π B1 B2 ≈ B : Type@k }}) /\ (exists k, {{ Γ ⊢ A1 ≈ B1 : Type@k }}) /\ {{ Γ, B1 ⊢ A2 ⊆ B2 }}). Proof. - intros. - assert {{ Γ ⊢ A ≈ B : Type@i }} as [? []]%completeness_ty by mauto 2 using soundness_ty'. - functional_nbe_rewrite_clear. - reflexivity. + induction 1; mauto 3. + - destruct_all; firstorder (mauto 3); + try (right; right; do 4 eexists; repeat split; mautosolve 3). + + right; left. + match goal with + | _: {{ Γ ⊢ M' ≈ Type@?i : Type@_ }}, + _: {{ Γ ⊢ Type@?j ≈ M' : Type@_ }} |- _ => + assert {{ Γ ⊢ Type@j ≈ Type@i : Type@_ }} by mauto 3; + assert (j = i) as -> by mauto 3 + end. + do 2 eexists; repeat split; mauto 3; lia. + + assert {{ Γ ⊢ Π ~_ ~_ ≈ Type@_ : Type@_ }} by mauto 3. + assert ({{{ Π ~_ ~_ }}} = {{{ Type@_ }}}) by mauto 3; congruence. + + right; left. + assert {{ Γ ⊢ Π ~_ ~_ ≈ Type@_ : Type@_ }} by mauto 3. + assert ({{{ Π ~_ ~_ }}} = {{{ Type@_ }}}) by mauto 3; congruence. + + right; right. + match goal with + | _: {{ Γ ⊢ M' ≈ Π ~?A1 ~?A2 : Type@_ }}, + _: {{ Γ ⊢ Π ~?B1 ~?B2 ≈ M' : Type@_ }} |- _ => + assert {{ Γ ⊢ Π A1 A2 ≈ Π B1 B2 : Type@_ }} by mauto 3; + assert ({{ Γ ⊢ A1 ≈ B1 : Type@_ }} /\ {{ Γ, A1 ⊢ A2 ≈ B2 : Type@_ }}) as [] by mauto 3 using exp_eq_pi_inversion + end. + do 4 eexists; repeat split; mauto 3. + * eexists; mauto 4. + * etransitivity; mauto 3. + etransitivity; eapply ctxeq_subtyp; mauto 3; eapply wf_ctx_eq_extend'; mauto 3. + - right; left. + do 2 eexists; repeat split; mauto 4; lia. + - right; right. + do 4 eexists; repeat split; mauto 4. Qed. #[export] -Hint Resolve idempotent_nbe_ty : mcltt. +Hint Resolve subtyp_spec : mcltt. + +Lemma consistency_ne_helper : forall {i T T'} {W : ne}, + is_typ_constr T' -> + (forall j, T' <> {{{ Type@j }}}) -> + {{ ⋅, Type@i ⊢ T ⊆ T' }} -> + ~ {{ ⋅, Type@i ⊢ W : T }}. +Proof. + intros * HT' HT'eq Heq HW. gen T'. + dependent induction HW; intros; mauto 3; try directed dependent destruction HT'; + try (destruct W; simpl in *; congruence). + - destruct W; simpl in *; autoinjections. + eapply IHHW4; [| | | | mauto 4]; mauto 3; congruence. + - destruct W; simpl in *; autoinjections. + eapply IHHW3; [| | | | mauto 4]; mauto 3; congruence. + - destruct W; simpl in *; autoinjections. + do 2 match_by_head ctx_lookup ltac:(fun H => dependent destruction H). + assert {{ ⋅, Type@i ⊢ Type@i[Wk] ≈ Type@i : Type@(S i) }} by mauto 3. + eapply subtyp_spec in Heq as [| []]; destruct_conjs; + try (eapply HT'eq; mautosolve 4). + assert {{ ⋅, Type@i ⊢ Type@i ≈ Π ~_ ~_ : Type@_ }} by mauto 3. + assert ({{{ Π ~_ ~_ }}} = {{{ Type@i }}}) by mauto 3. + congruence. +Qed. + +Theorem consistency : forall {i} M, + ~ {{ ⋅ ⊢ M : Π Type@i #0 }}. +Proof. + intros * HW. + assert (exists W1 W2, nbe {{{ ⋅ }}} M {{{ Π Type@i #0 }}} n{{{ λ W1 W2 }}}) as [? [? Hnbe]] by mauto 3. + assert (exists W, nbe {{{ ⋅ }}} M {{{ Π Type@i #0 }}} W /\ {{ ⋅ ⊢ M ≈ W : Π Type@i #0 }}) as [? []] by mauto 3 using soundness. + gen_presups. + functional_nbe_rewrite_clear. + dependent destruction Hnbe. + invert_rel_typ_body. + match_by_head read_nf ltac:(fun H => directed dependent destruction H). + match_by_head read_typ ltac:(fun H => directed dependent destruction H). + invert_rel_typ_body. + match_by_head read_nf ltac:(fun H => directed dependent destruction H). + simpl in *. + assert (exists B, {{ ⋅, Type@i ⊢ M0 : B }} /\ {{ ⋅ ⊢ Π Type@i B ⊆ Π Type@i #0 }}) as [? [? [| []]%subtyp_spec]] by mauto 3; + destruct_conjs; + try assert ({{{ Π ~_ ~_ }}} = {{{ Type@_ }}}) by mauto 3; + try congruence. + - assert (_ /\ {{ ⋅, Type@i ⊢ ~_ ≈ #0 : ~_ }}) as [_ ?] by mauto 3 using exp_eq_pi_inversion. + eapply consistency_ne_helper; mauto 3. + congruence. + - assert (_ /\ {{ ~_ ⊢ x ≈ ~_ : ~_ }}) as [_ ?] by mauto 3 using exp_eq_pi_inversion. + assert (_ /\ {{ ~_ ⊢ ~_ ≈ #0 : ~_ }}) as [? ?] by mauto 3 using exp_eq_pi_inversion. + assert {{ ⋅, Type@i ⊢ x ⊆ #0 }} by (etransitivity; [| eapply ctxeq_subtyp]; mauto 4). + eapply consistency_ne_helper; mauto 3. + congruence. +Qed. diff --git a/theories/Core/Semantic/NbE.v b/theories/Core/Semantic/NbE.v index 25e82bf..a13076f 100644 --- a/theories/Core/Semantic/NbE.v +++ b/theories/Core/Semantic/NbE.v @@ -1,6 +1,7 @@ From Mcltt Require Import LibTactics. From Mcltt.Core Require Import Base. From Mcltt.Core.Semantic Require Export Domain Evaluation Readback. +From Mcltt.Core.Syntactic Require Export System. Import Domain_Notations. Generalizable All Variables. @@ -30,6 +31,23 @@ Qed. #[export] Hint Resolve functional_initial_env : mcltt. +(** In the following spec, we do not care (for now) + whether [a] is the evaluation result of A or not. + If we want to specify that as well, we need a generalized + version of [drop_env] that can drop [x] elements. *) +Lemma initial_env_spec : forall x Γ ρ A, + initial_env Γ ρ -> + {{ #x : A ∈ Γ }} -> + exists a, ρ x = d{{{ ⇑! a (length Γ - x - 1) }}}. +Proof. + induction x; intros * Hinit Hlookup; + dependent destruction Hlookup; dependent destruction Hinit; simpl; mauto 3. + eexists; repeat f_equal; lia. +Qed. + +#[export] +Hint Resolve initial_env_spec : mcltt. + Ltac functional_initial_env_rewrite_clear1 := let tactic_error o1 o2 := fail 3 "functional_initial_env equality between" o1 "and" o2 "cannot be solved by mauto" in match goal with diff --git a/theories/Core/Syntactic/System/Lemmas.v b/theories/Core/Syntactic/System/Lemmas.v index 56be1da..242120b 100644 --- a/theories/Core/Syntactic/System/Lemmas.v +++ b/theories/Core/Syntactic/System/Lemmas.v @@ -6,6 +6,15 @@ Import Syntax_Notations. (** ** Core Presuppositions *) (** *** Basic inversion *) +Lemma ctx_lookup_lt : forall {Γ A x}, + {{ #x : A ∈ Γ }} -> + x < length Γ. +Proof. + induction 1; simpl; lia. +Qed. +#[export] +Hint Resolve ctx_lookup_lt : mcltt. + Lemma ctx_decomp : forall {Γ A}, {{ ⊢ Γ , A }} -> {{ ⊢ Γ }} /\ exists i, {{ Γ ⊢ A : Type@i }}. Proof with now eauto. inversion 1... @@ -1135,3 +1144,16 @@ Qed. #[export] Hint Resolve ctx_sub_ctx_lookup : mcltt. + +Lemma no_closed_neutral : forall {A} {W : ne}, + ~ {{ ⋅ ⊢ W : A }}. +Proof. + intros * H. + dependent induction H; destruct W; + try (simpl in *; congruence); + autoinjections; + intuition. + inversion_by_head ctx_lookup. +Qed. +#[export] +Hint Resolve no_closed_neutral : mcltt.