diff --git a/theories/Core/Semantic/PER/Definitions.v b/theories/Core/Semantic/PER/Definitions.v index 1323d94c..a7e1704f 100644 --- a/theories/Core/Semantic/PER/Definitions.v +++ b/theories/Core/Semantic/PER/Definitions.v @@ -5,14 +5,14 @@ From Mcltt Require Export Domain. Import Domain_Notations. Notation "'Dom' a ≈ b ∈ R" := ((R a b : Prop) : Prop) (in custom judg at level 90, a custom domain, b custom domain, R constr). -Notation "'DF' a ≈ b ∈ R ↘ R'" := ((R a b R' : Prop) : Prop) (in custom judg at level 90, a custom domain, b custom domain, R constr, R' constr). +Notation "'DF' a ≈ b ∈ R ↘ R'" := ((R R' a b : Prop) : Prop) (in custom judg at level 90, a custom domain, b custom domain, R constr, R' constr). Notation "'Exp' a ≈ b ∈ R" := (R a b : (Prop : Type)) (in custom judg at level 90, a custom exp, b custom exp, R constr). -Notation "'EF' a ≈ b ∈ R ↘ R'" := (R a b R' : (Prop : Type)) (in custom judg at level 90, a custom exp, b custom exp, R constr, R' constr). +Notation "'EF' a ≈ b ∈ R ↘ R'" := (R R' a b : (Prop : Type)) (in custom judg at level 90, a custom exp, b custom exp, R constr, R' constr). Generalizable All Variables. (** Helper Bundles *) -Inductive rel_mod_eval (R : domain -> domain -> relation domain -> Prop) A p A' p' R' : Prop := mk_rel_mod_eval : forall a a', {{ ⟦ A ⟧ p ↘ a }} -> {{ ⟦ A' ⟧ p' ↘ a' }} -> {{ DF a ≈ a' ∈ R ↘ R' }} -> rel_mod_eval R A p A' p' R'. +Inductive rel_mod_eval (R : relation domain -> domain -> domain -> Prop) A p A' p' R' : Prop := mk_rel_mod_eval : forall a a', {{ ⟦ A ⟧ p ↘ a }} -> {{ ⟦ A' ⟧ p' ↘ a' }} -> {{ DF a ≈ a' ∈ R ↘ R' }} -> rel_mod_eval R A p A' p' R'. #[global] Arguments mk_rel_mod_eval {_ _ _ _ _ _}. @@ -81,7 +81,7 @@ Section Per_univ_elem_core_def. (i : nat) (per_univ_rec : forall {j}, j < i -> relation domain). - Inductive per_univ_elem_core : domain -> domain -> relation domain -> Prop := + Inductive per_univ_elem_core : relation domain -> domain -> domain -> Prop := | per_univ_elem_core_univ : `{ forall (lt_j_i : j < i), j = j' -> @@ -102,39 +102,39 @@ Section Per_univ_elem_core_def. . Hypothesis - (motive : domain -> domain -> relation domain -> Prop) - (case_U : forall (j j' : nat) (lt_j_i : j < i), j = j' -> motive d{{{ 𝕌@j }}} d{{{ 𝕌@j' }}} (per_univ_rec lt_j_i)) - (case_nat : motive d{{{ ℕ }}} d{{{ ℕ }}} per_nat) + (motive : relation domain -> domain -> domain -> Prop) + (case_U : forall (j j' : nat) (lt_j_i : j < i), j = j' -> motive (per_univ_rec lt_j_i) d{{{ 𝕌@j }}} d{{{ 𝕌@j' }}}) + (case_nat : motive per_nat d{{{ ℕ }}} d{{{ ℕ }}}) (case_Pi : forall {A p B A' p' B' in_rel elem_rel} (out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain), {{ DF A ≈ A' ∈ per_univ_elem_core ↘ in_rel }} -> - motive A A' in_rel -> + motive in_rel A A' -> PER in_rel -> (forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), - rel_mod_eval (fun x y R => {{ DF x ≈ y ∈ per_univ_elem_core ↘ R }} /\ motive x y R) B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) -> + rel_mod_eval (fun R x y => {{ DF x ≈ y ∈ per_univ_elem_core ↘ R }} /\ motive R x y) B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) -> (forall f f', elem_rel f f' = forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app (out_rel equiv_c_c') f c f' c') -> - motive d{{{ Π A p B }}} d{{{ Π A' p' B' }}} elem_rel) - (case_ne : (forall {a b a' b'}, {{ Dom b ≈ b' ∈ per_bot }} -> motive d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}} per_ne)). + motive elem_rel d{{{ Π A p B }}} d{{{ Π A' p' B' }}}) + (case_ne : (forall {a b a' b'}, {{ Dom b ≈ b' ∈ per_bot }} -> motive per_ne d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}})). #[derive(equations=no, eliminator=no)] - Equations per_univ_elem_core_strong_ind a b R (H : {{ DF a ≈ b ∈ per_univ_elem_core ↘ R }}) : {{ DF a ≈ b ∈ motive ↘ R }} := - | a, b, R, (per_univ_elem_core_univ lt_j_i eq) => case_U _ _ lt_j_i eq; - | a, b, R, per_univ_elem_core_nat => case_nat; - | a, b, R, (per_univ_elem_core_pi in_rel out_rel equiv_a_a' per HT HE) => + Equations per_univ_elem_core_strong_ind R a b (H : {{ DF a ≈ b ∈ per_univ_elem_core ↘ R }}) : {{ DF a ≈ b ∈ motive ↘ R }} := + | R, a, b, (per_univ_elem_core_univ lt_j_i eq) => case_U _ _ lt_j_i eq; + | R, a, b, per_univ_elem_core_nat => case_nat; + | R, a, b, (per_univ_elem_core_pi in_rel out_rel equiv_a_a' per HT HE) => case_Pi out_rel equiv_a_a' (per_univ_elem_core_strong_ind _ _ _ equiv_a_a') per (fun _ _ equiv_c_c' => match HT _ _ equiv_c_c' with | mk_rel_mod_eval b b' evb evb' Rel => mk_rel_mod_eval b b' evb evb' (conj _ (per_univ_elem_core_strong_ind _ _ _ Rel)) end) HE; - | a, b, R, (per_univ_elem_core_neut equiv_b_b') => case_ne equiv_b_b'. + | R, a, b, (per_univ_elem_core_neut equiv_b_b') => case_ne equiv_b_b'. End Per_univ_elem_core_def. Global Hint Constructors per_univ_elem_core : mcltt. -Equations per_univ_elem (i : nat) : domain -> domain -> relation domain -> Prop by wf i := +Equations per_univ_elem (i : nat) : relation domain -> domain -> domain -> Prop by wf i := | i => per_univ_elem_core i (fun j lt_j_i a a' => exists R', {{ DF a ≈ a' ∈ per_univ_elem j ↘ R' }}). Definition per_univ (i : nat) : relation domain := fun a a' => exists R', {{ DF a ≈ a' ∈ per_univ_elem i ↘ R' }}. @@ -157,36 +157,36 @@ Global Hint Resolve per_univ_elem_core_univ' : mcltt. Section Per_univ_elem_ind_def. Hypothesis - (motive : nat -> domain -> domain -> relation domain -> Prop) + (motive : nat -> relation domain -> domain -> domain -> Prop) (case_U : forall j j' i, j < i -> j = j' -> - (forall A B R, {{ DF A ≈ B ∈ per_univ_elem j ↘ R }} -> motive j A B R) -> - motive i d{{{ 𝕌@j }}} d{{{ 𝕌@j' }}} (per_univ j)) - (case_N : forall i, motive i d{{{ ℕ }}} d{{{ ℕ }}} per_nat) + (forall A B R, {{ DF A ≈ B ∈ per_univ_elem j ↘ R }} -> motive j R A B) -> + motive i (per_univ j) d{{{ 𝕌@j }}} d{{{ 𝕌@j' }}}) + (case_N : forall i, motive i per_nat d{{{ ℕ }}} d{{{ ℕ }}}) (case_Pi : forall i {A p B A' p' B' in_rel elem_rel} (out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain), {{ DF A ≈ A' ∈ per_univ_elem i ↘ in_rel }} -> - motive i A A' in_rel -> + motive i in_rel A A' -> PER in_rel -> (forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), - rel_mod_eval (fun x y R => {{ DF x ≈ y ∈ per_univ_elem i ↘ R }} /\ motive i x y R) B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) -> + rel_mod_eval (fun R x y => {{ DF x ≈ y ∈ per_univ_elem i ↘ R }} /\ motive i R x y) B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) -> (forall f f', elem_rel f f' = forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app (out_rel equiv_c_c') f c f' c') -> - motive i d{{{ Π A p B }}} d{{{ Π A' p' B' }}} elem_rel) - (case_ne : (forall i {a b a' b'}, {{ Dom b ≈ b' ∈ per_bot }} -> motive i d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}} per_ne)). + motive i elem_rel d{{{ Π A p B }}} d{{{ Π A' p' B' }}}) + (case_ne : (forall i {a b a' b'}, {{ Dom b ≈ b' ∈ per_bot }} -> motive i per_ne d{{{ ⇑ a b }}} d{{{ ⇑ a' b' }}})). #[local] Ltac def_simp := simp per_univ_elem in *. #[derive(equations=no, eliminator=no), tactic="def_simp"] - Equations per_univ_elem_ind' (i : nat) (a b : domain) (R : relation domain) + Equations per_univ_elem_ind' (i : nat) (R : relation domain) (a b : domain) (H : {{ DF a ≈ b ∈ per_univ_elem_core i (fun j lt_j_i a a' => exists R', {{ DF a ≈ a' ∈ per_univ_elem j ↘ R' }}) ↘ R }}) : {{ DF a ≈ b ∈ motive i ↘ R }} by wf i := - | i, a, b, R, H => + | i, R, a, b, H => per_univ_elem_core_strong_ind i _ (motive i) - (fun j j' j_lt_i eq => case_U j j' i j_lt_i eq (fun A B R' H' => per_univ_elem_ind' _ A B R' _)) + (fun j j' j_lt_i eq => case_U j j' i j_lt_i eq (fun A B R' H' => per_univ_elem_ind' _ R' A B _)) (case_N i) (fun A p B A' p' B' in_rel elem_rel out_rel HA IHA per HT HE => case_Pi i out_rel _ IHA per _ HE) (@case_ne i) - a b R H. + R a b H. #[derive(equations=no, eliminator=no), tactic="def_simp"] Equations per_univ_elem_ind i a b R (H : per_univ_elem i a b R) : motive i a b R := @@ -214,7 +214,7 @@ Arguments rel_typ _ _ _ _ _ _ /. Definition per_total : relation env := fun p p' => True. -Inductive per_ctx_env : ctx -> ctx -> relation env -> Prop := +Inductive per_ctx_env : relation env -> ctx -> ctx -> Prop := | per_ctx_env_nil : `{ {{ EF ⋅ ≈ ⋅ ∈ per_ctx_env ↘ per_total }} } | per_ctx_env_cons : @@ -229,5 +229,5 @@ Inductive per_ctx_env : ctx -> ctx -> relation env -> Prop := {{ EF Γ, A ≈ Γ', A' ∈ per_ctx_env ↘ env_rel }} } . -Definition per_ctx : relation ctx := fun Γ Γ' => exists R', per_ctx_env Γ Γ' R'. +Definition per_ctx : relation ctx := fun Γ Γ' => exists R', per_ctx_env R' Γ Γ'. Definition valid_ctx : ctx -> Prop := fun Γ => per_ctx Γ Γ. diff --git a/theories/Core/Semantic/PER/Lemmas.v b/theories/Core/Semantic/PER/Lemmas.v index 9be5418a..fde056cc 100644 --- a/theories/Core/Semantic/PER/Lemmas.v +++ b/theories/Core/Semantic/PER/Lemmas.v @@ -1,4 +1,5 @@ From Coq Require Import Lia PeanoNat Relation_Definitions RelationClasses. +From Equations Require Import Equations. From Mcltt Require Import Axioms Base Evaluation LibTactics PER.Definitions Readback. Import Domain_Notations. @@ -148,9 +149,9 @@ Qed. #[export] Hint Resolve per_ne_trans : mcltt. -Lemma per_univ_elem_right_irrel : forall i i' A B R B' R', - per_univ_elem i A B R -> - per_univ_elem i' A B' R' -> +Lemma per_univ_elem_right_irrel : forall i i' R A B R' B', + per_univ_elem i R A B -> + per_univ_elem i' R' A B' -> R = R'. Proof with mautosolve. intros * Horig. @@ -181,9 +182,9 @@ Ltac per_univ_elem_right_irrel_rewrite1 := #[local] Ltac per_univ_elem_right_irrel_rewrite := repeat per_univ_elem_right_irrel_rewrite1. -Lemma per_univ_elem_sym : forall i A B R, - per_univ_elem i A B R -> - per_univ_elem i B A R /\ +Lemma per_univ_elem_sym : forall i R A B, + per_univ_elem i R A B -> + per_univ_elem i R B A /\ (forall a b, {{ Dom a ≈ b ∈ R }} -> {{ Dom b ≈ a ∈ R }}). @@ -216,16 +217,16 @@ Proof with (try econstructor; mautosolve). - split... Qed. -Corollary per_univ_sym : forall i A B R, - per_univ_elem i A B R -> - per_univ_elem i B A R. +Corollary per_univ_sym : forall i R A B, + per_univ_elem i R A B -> + per_univ_elem i R B A. Proof. intros * ?%per_univ_elem_sym. firstorder. Qed. -Corollary per_elem_sym : forall i A B a b R, - per_univ_elem i A B R -> +Corollary per_elem_sym : forall i R A B a b, + per_univ_elem i R A B -> R a b -> R b a. Proof. @@ -233,18 +234,18 @@ Proof. firstorder. Qed. -Corollary per_univ_elem_left_irrel : forall i i' A B R A' R', - per_univ_elem i A B R -> - per_univ_elem i' A' B R' -> +Corollary per_univ_elem_left_irrel : forall i i' R A B R' A', + per_univ_elem i R A B -> + per_univ_elem i' R' A' B -> R = R'. Proof. intros * ?%per_univ_sym ?%per_univ_sym. eauto using per_univ_elem_right_irrel. Qed. -Corollary per_univ_elem_cross_irrel : forall i i' A B R B' R', - per_univ_elem i A B R -> - per_univ_elem i' B' A R' -> +Corollary per_univ_elem_cross_irrel : forall i i' R A B R' B', + per_univ_elem i R A B -> + per_univ_elem i' R' B' A -> R = R'. Proof. intros * ? ?%per_univ_sym. @@ -274,11 +275,11 @@ Ltac per_univ_elem_irrel_rewrite := do_per_univ_elem_irrel_rewrite; clear_dups. -Lemma per_univ_elem_trans : forall i A1 A2 R, - per_univ_elem i A1 A2 R -> +Lemma per_univ_elem_trans : forall i R A1 A2, + per_univ_elem i R A1 A2 -> (forall j A3, - per_univ_elem j A2 A3 R -> - per_univ_elem i A1 A3 R) /\ + per_univ_elem j R A2 A3 -> + per_univ_elem i R A1 A3) /\ (forall a1 a2 a3, R a1 a2 -> R a2 a3 -> @@ -311,17 +312,17 @@ Proof with ((econstructor + per_univ_elem_econstructor); mautosolve). - idtac... Qed. -Corollary per_univ_trans : forall i j A1 A2 A3 R, - per_univ_elem i A1 A2 R -> - per_univ_elem j A2 A3 R -> - per_univ_elem i A1 A3 R. +Corollary per_univ_trans : forall i j R A1 A2 A3, + per_univ_elem i R A1 A2 -> + per_univ_elem j R A2 A3 -> + per_univ_elem i R A1 A3. Proof. intros * ?%per_univ_elem_trans. firstorder. Qed. -Corollary per_elem_trans : forall i A1 A2 a1 a2 a3 R, - per_univ_elem i A1 A2 R -> +Corollary per_elem_trans : forall i R A1 A2 a1 a2 a3, + per_univ_elem i R A1 A2 -> R a1 a2 -> R a2 a3 -> R a1 a3. @@ -330,7 +331,42 @@ Proof. firstorder. Qed. -Lemma per_univ_elem_cumu : forall {i a0 a1 R}, + +#[export] + Instance per_elem_PER {i R A B} `(H : per_univ_elem i R A B) : PER R. +Proof. + split. + - auto using (per_elem_sym _ _ _ _ _ _ H). + - eauto using (per_elem_trans _ _ _ _ _ _ _ H). +Qed. + + +#[export] + Instance per_univ_PER {i R} : PER (per_univ_elem i R). +Proof. + split. + - auto using per_univ_sym. + - eauto using per_univ_trans. +Qed. + +(* This lemma gets rid of the unnecessary PER premise. *) +Lemma per_univ_elem_core_pi' : + forall i A p B A' p' B' elem_rel + (in_rel : relation domain) + (out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain) + (equiv_a_a' : {{ DF A ≈ A' ∈ per_univ_elem i ↘ in_rel}}), + (forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), + rel_mod_eval (per_univ_elem i) B d{{{ p ↦ c }}} B' d{{{ p' ↦ c' }}} (out_rel equiv_c_c')) -> + (forall f f', elem_rel f f' = forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app (out_rel equiv_c_c') f c f' c') -> + {{ DF Π A p B ≈ Π A' p' B' ∈ per_univ_elem i ↘ elem_rel }}. +Proof. + intros. + per_univ_elem_econstructor; eauto. + typeclasses eauto. +Qed. + + +Lemma per_univ_elem_cumu : forall i a0 a1 R, {{ DF a0 ≈ a1 ∈ per_univ_elem i ↘ R }} -> {{ DF a0 ≈ a1 ∈ per_univ_elem (S i) ↘ R }}. Proof with solve [eauto]. @@ -499,3 +535,21 @@ Proof. intros * ?% per_ctx_env_trans. firstorder. Qed. + + +#[export] + Instance per_ctx_PER {R} : PER (per_ctx_env R). +Proof. + split. + - auto using per_ctx_sym. + - eauto using per_ctx_trans. +Qed. + + +#[export] + Instance per_env_PER {R Γ Δ} (H : per_ctx_env R Γ Δ) : PER R. +Proof. + split. + - auto using (per_env_sym _ _ _ _ _ H). + - eauto using (per_env_trans _ _ _ _ _ _ H). +Qed. diff --git a/theories/LibTactics.v b/theories/LibTactics.v index c3ca18e6..38299cf1 100644 --- a/theories/LibTactics.v +++ b/theories/LibTactics.v @@ -153,3 +153,9 @@ Tactic Notation "mauto" int_or_var(pow) "using" uconstr(use1) "," uconstr(use2) eauto pow using use1, use2, use3, use4 with mcltt core. Ltac mautosolve := unshelve solve [mauto]; solve [constructor]. + + +(* Improve type class resolution *) + +#[export] + Hint Extern 1 => eassumption : typeclass_instances.