-
Notifications
You must be signed in to change notification settings - Fork 0
/
Decoder.py
638 lines (537 loc) · 26.9 KB
/
Decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import numpy as np
import torch
import torch.nn as nn
import os
import pytorch_lightning as pl
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
from typing import Optional, Tuple, Union
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GPT2Config,
GPT2LMHeadModel,
GPT2TokenizerFast,
PreTrainedTokenizerFast,
)
from transformers.models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
convert_gpt2_checkpoint_to_pytorch,
)
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
# Implement gpt2 decoder conditioned on paragraph embedding
# config, kwargs = AutoConfig.from_pretrained(
# "gpt2",
# return_unused_kwargs=True,
# trust_remote_code=False,
# cache_dir="aitextgen",
# )
#print(config)
#print("config cross attention", config.add_cross_attention)
#print("config inner",config.n_inner )
##print(config.hidden_size) # hidden size is 768
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "gpt2"
_CONFIG_FOR_DOC = "GPT2Config"
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"gpt2",
"gpt2-medium",
"gpt2-large",
"gpt2-xl",
"distilgpt2",
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2
]
class Decoder(pl.LightningModule):
"""
Try to make an LSTM encoder
"""
def __init__(self, embedding_size = 768, file_path=None,level="paragraph"):
super().__init__()
cache_dir = "aitextgen"
#config = os.path.join(cache_dir, f"config_{tf_gpt2}.json")
if file_path is not None:
self.model = self.load_model(file_path)
else:
self.model = AutoModelForCausalLM.from_pretrained(
"gpt2", cache_dir=cache_dir
)
self.config, self.kwargs = AutoConfig.from_pretrained(
"gpt2",
return_unused_kwargs=True,
trust_remote_code=False,
cache_dir="aitextgen",
)
self.embedding_size = embedding_size # Size of chunk embedding. MAKE SURE DIVISIBLE BY 12
# still of type GPT2LMHeadModel
print("using gpt2 model of type: ",type(self.model).__name__)
self.modify_gpt2()
GPT2LMHeadModel
# create custom modified GPT2LMHeadModel
def load_model(self, model_folder):
# A folder is provided containing pytorch_model.bin and config.json
assert os.path.exists(
os.path.join(model_folder, "pytorch_model.bin")
), f"There is no pytorch_model.bin in /{model_folder}."
assert os.path.exists(
os.path.join(model_folder, "config.json")
), f"There is no config.json in /{model_folder}."
logger.info(
f"Loading model from provided weights and config in /{model_folder}."
)
return self.model.from_pretrained(
model_folder, local_files_only=True
)
def modify_gpt2(self):
"""
Modifies gpt2 to take in expanded input that is concatenated by paragraph embedding
"""
# Now we need to update block.attn and block.ln_2 and block.mlp; also might have to deal with the layer_past stuff (may cause problems?)
# un-expand in the block.mlp
#self.block.forward = self.overwrite_block_forward
# First, expand weights
# expand hidden size from 768 to 768+self.embedding_size
self.block_list = self.model.transformer.h
self.block = self.block_list[0]
#self.block.ln_1 #= nn.LayerNorm(768 + self.embedding_size, eps=self.config.layer_norm_epsilon)
ln_1 = self.block.ln_1
ln_1.normalized_shape = (ln_1.normalized_shape[0]+self.embedding_size,)
ln_1.weight = nn.Parameter(torch.concat([ln_1.weight,torch.ones(self.embedding_size)],dim=0))
ln_1.bias = nn.Parameter(torch.concat([ln_1.bias, torch.zeros(self.embedding_size)], dim=0))
#self.block.ln_2 #= nn.LayerNorm(768 + self.embedding_size, eps=self.config.layer_norm_epsilon)
ln_2 = self.block.ln_2
ln_2.normalized_shape = (ln_2.normalized_shape[0]+self.embedding_size,)
ln_2.weight = nn.Parameter(torch.concat([ln_2.weight, torch.ones(self.embedding_size)], dim=0))
ln_2.bias = nn.Parameter(torch.concat([ln_2.bias, torch.zeros(self.embedding_size)], dim=0))
# CHANGE ATTENTION
# NOTE: make sure attn mask is 0 or -10000
attn = self.block.attn
c_attn = attn.c_attn
columns = [] # the columns of c_attn
bias_chunks = []
# change attn weight and bias
# EXPAND COLUMNS
for attn_type in range(3): # query, key, value
for attn_head in range(12):
# column range from attn_type*768+attn_head * 64
attn_head_start_column = attn_type*768+attn_head * 64
columns.append(c_attn.weight[:, attn_head_start_column : attn_head_start_column + int(self.embedding_size/12)]) # copy parts of c_attn
columns.append(torch.zeros(768, int(self.embedding_size/12)))
bias_chunks.append(c_attn.bias[attn_head_start_column: attn_head_start_column + int(self.embedding_size/12)])
bias_chunks.append(torch.zeros(int(self.embedding_size/12)))
c_attn.weight = nn.Parameter(torch.concat(columns, dim=1))
c_attn.bias = nn.Parameter(torch.concat(bias_chunks, dim=0))
# EXPAND ROWS
c_attn.weight = nn.Parameter(torch.concat([c_attn.weight,torch.zeros(self.embedding_size, 3*768+3*self.embedding_size)], dim=0))
c_attn.nf = 3*(self.config.hidden_size+self.embedding_size)
attn.embed_dim = self.config.hidden_size+self.embedding_size
attn.head_dim = attn.embed_dim // attn.num_heads
attn.split_size = attn.embed_dim
# Attention Proj
attn_proj = self.block.attn.c_proj #= Conv1D(self.embed_dim, self.embed_dim)
attn_proj.weight = nn.Parameter(torch.concat([attn_proj.weight, torch.zeros((768,self.embedding_size))],dim=1))
attn_proj.weight = nn.Parameter(torch.concat([attn_proj.weight, torch.zeros((self.embedding_size, 768+self.embedding_size))], dim=0))
attn_proj.bias = nn.Parameter(torch.concat([attn_proj.bias, torch.zeros(self.embedding_size)], dim=0))
attn_proj.nf = attn_proj.nf + self.embedding_size
# CHANGE MLP
hidden_size = 768
mlp = self.block.mlp
current_c_fc_weight = mlp.c_fc.weight
#embed x 4*hidden_size
first_zeros_c_fc = torch.zeros(hidden_size, 4*self.embedding_size)
current_c_fc_weight = torch.cat([current_c_fc_weight,first_zeros_c_fc], dim=1)
#now hidden x (4*hidden_size + 4*embedding_size)
second_zeros_c_fc = torch.zeros(self.embedding_size, 4*self.embedding_size+4*hidden_size)
current_c_fc_weight = torch.cat([current_c_fc_weight,second_zeros_c_fc], dim = 0)
mlp.c_fc.weight = nn.Parameter(current_c_fc_weight)
current_c_fc_bias = mlp.c_fc.bias
zeros_c_fc_bias = torch.zeros(4*self.embedding_size)
current_c_fc_bias = torch.cat([current_c_fc_bias, zeros_c_fc_bias], dim=0)
mlp.c_fc.bias = nn.Parameter(current_c_fc_bias)
mlp.c_fc.nf = mlp.c_fc.nf + 4*self.embedding_size
#proj:
current_c_proj_weight = mlp.c_proj.weight
#4*hidden_size x embed
first_zeros_c_proj = torch.zeros(4*self.embedding_size, hidden_size)
current_c_proj_weight = torch.cat([current_c_proj_weight,first_zeros_c_proj], dim=0)
#now (4*hidden_size + 4*embedding_size) x hidden
mlp.c_proj.weight = nn.Parameter(current_c_proj_weight)
# Now, overwrite forward methods
self.block.attn.forward = self.overwrite_attn_forward
self.block.forward = self.overwrite_block_forward
self.model.transformer.forward = self.overwrite_gpt2_forward
self.model.forward = self.overwrite_gpt2lmhead_forward
def overwrite_attn_forward(
decoder,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
self = decoder.block.attn
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn"):
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
)
query = self.q_attn(hidden_states)
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
attention_mask = encoder_attention_mask
else:
x = hidden_states
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if layer_past is not None:
past_key, past_value = layer_past
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
if self.reorder_and_upcast_attn:
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
else:
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
def overwrite_block_forward(self,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=False,
output_attentions=False,):
hidden_states = hidden_states.float()
residual = hidden_states
hidden_states = self.block.ln_1(hidden_states)
attn_outputs = self.block.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.block.ln_cross_attn(hidden_states)
cross_attn_outputs = self.block.crossattention(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
attn_output = cross_attn_outputs[0]
# residual connection
hidden_states = residual + attn_output
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
residual = hidden_states
hidden_states = self.block.ln_2(hidden_states)
feed_forward_hidden_states = self.block.mlp(hidden_states)
dimensions = feed_forward_hidden_states.size()
assert(len(dimensions)==3)
residual = residual[:dimensions[0], :dimensions[1], :dimensions[2]]
# residual connection
hidden_states = residual + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions, cross_attentions)
def overwrite_gpt2_forward(
decoder,
paragraph_embedding = None,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
self = decoder.model.transformer
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# GPT2Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
output_shape_compressed= input_shape + (inputs_embeds.size(-1),)
# CONCATENATE PARAGRAPH EMBEDDINGS TO INPUTS
necessary_repeating = inputs_embeds.shape[1]
hidden_states = torch.cat((inputs_embeds + position_embeds,
paragraph_embedding.unsqueeze(1).repeat(1, necessary_repeating, 1)), dim=-1)
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape_expanded = input_shape + (hidden_states.size(-1),)
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if i==0:
output_shape = output_shape_expanded
else:
output_shape = output_shape_compressed
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
def overwrite_gpt2lmhead_forward(
decoder,
input_ids: Optional[torch.LongTensor] = None,
conditioned_on = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
self = decoder.model
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
paragraph_embedding=conditioned_on,
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
def forward(self,embedding, x):
#return self.model(input_ids= x, labels=x)
return self.model(input_ids= x, labels=x, conditioned_on=embedding)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters,lr=0.001)
return optimizer
def training_step(self, batch_inp, step_id):
pass
def save_pretrained(self, target_folder: str = os.getcwd()):
"""Saves the model into the specified directory."""
print("SAVING DECODER TO: ", target_folder)
self.model.save_pretrained(target_folder)