diff --git a/src/transformers/models/instructblipvideo/modular_instructblipvideo.py b/src/transformers/models/instructblipvideo/modular_instructblipvideo.py index f475a02626c0de..7184955af3aa56 100644 --- a/src/transformers/models/instructblipvideo/modular_instructblipvideo.py +++ b/src/transformers/models/instructblipvideo/modular_instructblipvideo.py @@ -261,7 +261,7 @@ def forward( output_hidden_states=output_hidden_states, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, - )git + ) image_embeds = vision_outputs[0] # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention diff --git a/src/transformers/utils/import_utils.py b/src/transformers/utils/import_utils.py index ec1dbad698466b..32a647594741dd 100755 --- a/src/transformers/utils/import_utils.py +++ b/src/transformers/utils/import_utils.py @@ -1006,15 +1006,6 @@ def is_compressed_tensors_available(): return _compressed_tensors_available -def is_optimum_quanto_available(): - # `importlib.metadata.version` doesn't work with `optimum.quanto`, need to put `optimum_quanto` - return _is_optimum_quanto_available - - -def is_compressed_tensors_available(): - return _compressed_tensors_available - - def is_auto_gptq_available(): return _auto_gptq_available