-
Notifications
You must be signed in to change notification settings - Fork 0
/
build_net.py
145 lines (105 loc) · 4.06 KB
/
build_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2017 Bert Moons
# This file is part of QNN.
# QNN is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# QNN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# The code for QNN is based on BinaryNet: https://github.com/MatthieuCourbariaux/BinaryNet
# You should have received a copy of the GNU General Public License
# along with QNN. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
import sys
import time
import gc
import numpy as np
np.random.seed(1234) # for reproducibility?
import theano
import theano.tensor as T
import lasagne
import cPickle as pickle
import gzip
import quantized_net
from collections import OrderedDict
def build_net(input,quantized,stochastic=False,H=1.0,W_LR_scale="Glorot",activation=quantized_net.quantized_hardtanh_unit,epsilon=1e-4,alpha=.1,patch_size=32,channels=3, window=3,nfA=64,nlA=1,nfB=64,nlB=1,nfC=64,nlC=1, hidden_layer_size=1024, classes=10):
cnn = lasagne.layers.InputLayer(
shape=(None, channels, patch_size, patch_size),
input_var=input)
# Block A
for i in range(0,nlA):
cnn = quantized_net.Conv2DLayer(
cnn,
quantized=quantized,
stochastic=stochastic,
W_LR_scale=W_LR_scale,
num_filters=nfA,
filter_size=(window, window),
pad='same',
nonlinearity=lasagne.nonlinearities.identity)
cnn = lasagne.layers.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha)
cnn = lasagne.layers.NonlinearityLayer(
cnn,
nonlinearity=activation)
print(cnn.output_shape)
cnn = lasagne.layers.MaxPool2DLayer(cnn, pool_size=(2, 2))
print("After MaxPool: "+ str(cnn.output_shape))
# Block B
for i in range(0,nlB):
cnn = quantized_net.Conv2DLayer(
cnn,
quantized=quantized,
stochastic=stochastic,
W_LR_scale=W_LR_scale,
num_filters=nfB,
filter_size=(window, window),
pad='same',
nonlinearity=lasagne.nonlinearities.identity)
cnn = lasagne.layers.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha)
cnn = lasagne.layers.NonlinearityLayer(
cnn,
nonlinearity=activation)
print(cnn.output_shape)
cnn = lasagne.layers.MaxPool2DLayer(cnn, pool_size=(2, 2))
print("After MaxPool: "+ str(cnn.output_shape))
# Block C
for i in range(0,nlC):
cnn = quantized_net.Conv2DLayer(
cnn,
quantized=quantized,
stochastic=stochastic,
W_LR_scale=W_LR_scale,
num_filters=nfC,
filter_size=(window, window),
pad='same',
nonlinearity=lasagne.nonlinearities.identity)
cnn = lasagne.layers.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha)
cnn = lasagne.layers.NonlinearityLayer(
cnn,
nonlinearity=activation)
print(cnn.output_shape)
cnn = lasagne.layers.MaxPool2DLayer(cnn, pool_size=(2, 2))
print("After MaxPool: "+ str(cnn.output_shape))
cnn = quantized_net.DenseLayer(
cnn,
quantized=False,
stochastic=stochastic,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=classes)
cnn = lasagne.layers.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha)
return cnn