-
Notifications
You must be signed in to change notification settings - Fork 0
/
scheduling_ddim_old.py
412 lines (360 loc) · 20.5 KB
/
scheduling_ddim_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin
def expand_to_shape(input, timesteps, shape, device):
"""
Helper indexes a 1D tensor `input` using a 1D index tensor `timesteps`, then reshapes the result to broadcast
nicely with `shape`. Useful for parellizing operations over `shape[0]` number of diffusion steps at once.
"""
out = torch.gather(input.to(device), 0, timesteps.to(device))
reshape = [shape[0]] + [1] * (len(shape) - 1)
out = out.reshape(*reshape)
return out
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class DDIMSchedulerOutput(BaseOutput):
"""
Args:
Output class for the scheduler's step function output.
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
"""
Args:
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the
cumulative product of (1-beta) up to that part of the diffusion process.
num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use;
use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas)
def _logsnr_schedule_cosine(t, logsnr_min=-20, logsnr_max=20):
logsnr_min = torch.tensor(logsnr_min, dtype=torch.float32)
logsnr_max = torch.tensor(logsnr_max, dtype=torch.float32)
b = torch.arctan(torch.exp(-0.5 * logsnr_max))
a = torch.arctan(torch.exp(-0.5 * logsnr_min)) - b
return -2.0 * torch.log(torch.tan(a * t + b))
def t_to_alpha_sigma(num_diffusion_timesteps):
"""Returns the scaling factors for the clean image and for the noise, given
a timestep."""
out = torch.FloatTensor([_logsnr_schedule_cosine(t) for t in torch.linspace(0, 1, 1000)])
alphas = torch.sqrt(torch.sigmoid(out))
sigmas = torch.sqrt(torch.sigmoid(-out))
# alphas = torch.cos(
# torch.tensor([(t / num_diffusion_timesteps) * math.pi / 2 for t in range(num_diffusion_timesteps)])
# )
# sigmas = torch.sin(
# torch.tensor([(t / num_diffusion_timesteps) * math.pi / 2 for t in range(num_diffusion_timesteps)])
# )
return alphas, sigmas
class DDIMScheduler(SchedulerMixin, ConfigMixin):
"""
Args:
Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
diffusion probabilistic models (DDPMs) with non-Markovian guidance. [`~ConfigMixin`] takes care of storing all
config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can
be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving
functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details,
see the original paper: https://arxiv.org/abs/2010.02502
num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the
starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
clip_sample (`bool`, default `True`):
option to clip predicted sample between -1 and 1 for numerical stability.
set_alpha_to_one (`bool`, default `True`):
each diffusion step uses the value of alphas product at that step and at the previous one. For the final
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
otherwise it uses the value of alpha at step 0.
steps_offset (`int`, default `0`):
an offset added to the inference steps. You can use a combination of `offset=1` and
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
stable diffusion.
"""
_compatible_classes = [
"PNDMScheduler",
"DDPMScheduler",
"LMSDiscreteScheduler",
"EulerDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"DPMSolverMultistepScheduler",
]
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
clip_sample: bool = True,
set_alpha_to_one: bool = True,
variance_type: str = "fixed",
steps_offset: int = 0,
prediction_type: str = "epsilon",
**kwargs,
):
if trained_betas is not None:
self.betas = torch.from_numpy(trained_betas)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.variance_type = variance_type
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
if prediction_type == "v":
self.alphas, self.sigmas = t_to_alpha_sigma(num_train_timesteps)
# At every step in ddim, we are looking into the previous alphas_cumprod
# For the final step, there is no previous alphas_cumprod because we are already at 0
# `set_alpha_to_one` decides whether we set this parameter simply to one or
# whether we use the final alpha of the "non-previous" one.
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
self.final_sigma = torch.tensor(0.0) if set_alpha_to_one else self.sigmas[0]
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
self.variance_type = variance_type
self.prediction_type = prediction_type
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
"""
Args:
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def _get_variance(self, timestep, prev_timestep, eta=0):
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
if self.variance_type == "fixed":
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
elif self.variance_type == "v_diffusion":
# If eta > 0, adjust the scaling factor for the predicted noise
# downward according to the amount of additional noise to add
# variance = torch.log(self.betas[timestep] * (1 - alpha_prod_t_prev) / (1 - alpha_prod_t))
alpha_prev = self.alphas[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
sigma_prev = self.sigmas[prev_timestep] if prev_timestep >= 0 else self.final_sigma
if eta:
numerator = eta * (sigma_prev**2 / self.sigmas[timestep] ** 2).clamp(min=1.0e-7).sqrt()
else:
numerator = 0
denominator = (1 - self.alphas[timestep] ** 2 / alpha_prev**2).clamp(min=1.0e-7).sqrt()
ddim_sigma = (numerator * denominator).clamp(min=1.0e-7)
variance = (sigma_prev**2 - ddim_sigma**2).sqrt()
if torch.isnan(variance):
variance = 0
return variance
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Args:
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
self.timesteps = torch.from_numpy(timesteps).to(device)
self.timesteps += self.config.steps_offset
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
variance_noise: Optional[torch.FloatTensor] = None,
return_dict: bool = True,
) -> Union[DDIMSchedulerOutput, Tuple]:
"""
Args:
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current
discrete timestep in the diffusion chain. sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
prediction_type (`str`):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample), or `v` (see section 2.4
https://imagen.research.google/video/paper.pdf)
eta (`float`): weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`): if
`True`, compute "corrected" `model_output` from the clipped
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
coincide with the one provided as input and `use_clipped_model_output` will have not effect.
generator: random number generator. variance_noise (`torch.FloatTensor`): instead of generating noise for
the variance using `generator`, we
can directly provide the noise for the variance itself. This is useful for methods such as
CycleDiffusion. (https://arxiv.org/abs/2210.05559)
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, timestep)
# - pred_original_sample -> f_theta(x_t, timestep) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=timestep-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
eps = torch.tensor(1)
elif self.prediction_type == "sample":
pred_original_sample = model_output
eps = torch.tensor(1)
elif self.prediction_type == "v":
# v_t = alpha_t * epsilon - sigma_t * x
# need to merge the PRs for sigma to be available in DDPM
pred_original_sample = sample * self.alphas[timestep] - model_output * self.sigmas[timestep]
eps = model_output * self.alphas[timestep] + sample * self.sigmas[timestep]
else:
raise ValueError(
f"prediction_type given as {self.prediction_type} must be one of `epsilon`, `sample`, or `v`"
)
# 4. Clip "predicted x_0"
if self.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
variance = self._get_variance(timestep, prev_timestep, eta)
std_dev_t = eta * variance ** (0.5)
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.prediction_type == "epsilon":
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + eps * pred_sample_direction
else:
alpha_prev = self.alphas[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
prev_sample = pred_original_sample * alpha_prev + eps * variance
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
device = model_output.device
if variance_noise is not None and generator is not None:
raise ValueError(
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
" `variance_noise` stays `None`."
)
if variance_noise is None:
if device.type == "mps":
# randn does not work reproducibly on mps
variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
variance_noise = variance_noise.to(device)
else:
variance_noise = torch.randn(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
)
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise
prev_sample = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
if self.variance_type == "v_diffusion":
alpha, sigma = self.get_alpha_sigma(original_samples, timesteps, original_samples.device)
z_t = alpha * original_samples + sigma * noise
return z_t
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
def get_alpha_sigma(self, sample, timesteps, device):
alpha = expand_to_shape(self.alphas, timesteps, sample.shape, device)
sigma = expand_to_shape(self.sigmas, timesteps, sample.shape, device)
return alpha, sigma
def get_alpha_sigma_from_logsnr(self, sample, logsnr, device):
alpha = expand_to_shape(self.alphas, logsnr, sample.shape, device)
sigma = expand_to_shape(self.sigmas, logsnr, sample.shape, device)
return alpha, sigma