forked from joeljosephjin/La-MAML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainwb.py
231 lines (180 loc) · 8.18 KB
/
mainwb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import importlib
import datetime
import argparse
import time
import os
# import ipdb
# from tqdm import tqdm
import torch
from torch.autograd import Variable
import parser as file_parser
from metrics.metrics import confusion_matrix
from utils import misc_utils
from main_multi_task import life_experience_iid, eval_iid_tasks
import wandb
# eval_class_tasks(model, tasks, args) : returns lists of avg losses after passing thru model
# eval_tasks(model, tasks, args) : ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
# life_experience(model, inc_loader, args) :
# save_results(......) :
# def main():
# if __name__=...
# returns list of avg loss of each task
def eval_class_tasks(model, tasks, args):
# model.eval turns off dropouts, batchnorms. https://stackoverflow.com/questions/60018578/what-does-model-eval-do-in-pytorch
model.eval()
result = []
# for {0,1,2..} and task_loader? from tasks
for t, task_loader in enumerate(tasks):
rt = 0
# for
for x, y in task_loader:
# cuda-ize x if necessary
if args.cuda: x = x.cuda()
# push x thru model and get p out
_, p = torch.max(model(x, t).data.cpu(), 1, keepdim=False)
# rt is the loss/error . its being compared with label y
rt += (p == y).float().sum()
# append average loss into result list
result.append(rt / len(task_loader.dataset))
return result
# returns lists of avg loss
def eval_tasks(model, tasks, args):
# prep for eval
model.eval()
result = []
# for each task
for i, task in enumerate(tasks):
t = i
x, y = task[1], task[2]
rt = 0
eval_bs = x.size(0)
for b_from in range(0, x.size(0), eval_bs):
b_to = min(b_from + eval_bs, x.size(0) - 1)
if b_from == b_to:
xb, yb = x[b_from].view(1, -1), torch.LongTensor([y[b_to]]).view(1, -1)
else:
xb, yb = x[b_from:b_to], y[b_from:b_to]
# cuda-ize xb if necessary
if args.cuda: xb = xb.cuda()
_, pb = torch.max(model(xb, t).data.cpu(), 1, keepdim=False)
# adding the loss each time to rt
rt += (pb == yb).float().sum()
# average loss of each task added to result list
result.append(rt / x.size(0))
return result
# for lamaml and everything except iid
def life_experience(model, inc_loader, args):
wandb.init(project="rc2020", entity="joeljosephjin")
result_val_a = []
result_test_a = []
result_val_t = []
result_test_t = []
time_start = time.time()
test_tasks = inc_loader.get_tasks("test")
val_tasks = inc_loader.get_tasks("val")
evaluator = eval_tasks
if args.loader == "class_incremental_loader":
evaluator = eval_class_tasks
# for no. of tasks
# print(inc_loader.n_tasks)
for task_i in range(inc_loader.n_tasks):
# initialize new task
task_info, train_loader, _, _ = inc_loader.new_task()
# for no. of epochs
for ep in range(args.n_epochs):
model.real_epoch = ep
# prog_bar = tqdm(train_loader)
prog_bar = train_loader
# for each data tuple {x,y}
for (i, (x, y)) in enumerate(prog_bar):
if((i % args.log_every) == 0):
# get accuracy by evaluating on validation data ??
result_val_a.append(evaluator(model, val_tasks, args))
result_val_t.append(task_info["task"])
# v_x/y <= x/y
v_x, v_y = x, y
# linearize the x i.e. image => list
if args.arch == 'linear': v_x = x.view(x.size(0), -1)
# cuda-ize the x and y
if args.cuda: v_x, v_y = v_x.cuda(), v_y.cuda()
# init training session
model.train()
loss = model.observe(Variable(v_x), Variable(v_y), task_info["task"])
wandb.log({"Task": task_info["task"], "Epoch": ep+1/args.n_epochs, "Iter": i%(1000*args.n_epochs),
"Loss": round(loss, 3),
"Total Acc": round(sum(result_val_a[-1]).item()/len(result_val_a[-1]), 5),
"Curr Task Acc": round(result_val_a[-1][task_info["task"]].item(), 5)})
result_val_a.append(evaluator(model, val_tasks, args))
result_val_t.append(task_info["task"])
if args.calc_test_accuracy:
result_test_a.append(evaluator(model, test_tasks, args))
result_test_t.append(task_info["task"])
print("####Final Validation Accuracy####")
print("Final Results:- \n Total Accuracy: {} \n Individual Accuracy: {}".format(sum(result_val_a[-1])/len(result_val_a[-1]), result_val_a[-1]))
if args.calc_test_accuracy:
print("####Final Test Accuracy####")
print("Final Results:- \n Total Accuracy: {} \n Individual Accuracy: {}".format(sum(result_test_a[-1])/len(result_test_a[-1]), result_test_a[-1]))
time_end = time.time()
time_spent = time_end - time_start
return torch.Tensor(result_val_t), torch.Tensor(result_val_a), torch.Tensor(result_test_t), torch.Tensor(result_test_a), time_spent
def save_results(args, result_val_t, result_val_a, result_test_t, result_test_a, model, spent_time):
fname = os.path.join(args.log_dir, 'results')
# save confusion matrix and print one line of stats
val_stats = confusion_matrix(result_val_t, result_val_a, args.log_dir, 'results.txt')
wandb.log({"result_val_t":result_val_t, "result_val_a":result_val_a, "result_test_t":result_test_t, "result_test_a":result_test_a})
wandb.save(fname+'.txt')
one_liner = str(vars(args)) + ' # val: '
one_liner += ' '.join(["%.3f" % stat for stat in val_stats])
test_stats = 0
if args.calc_test_accuracy:
test_stats = confusion_matrix(result_test_t, result_test_a, args.log_dir, 'results.txt')
one_liner += ' # test: ' + ' '.join(["%.3f" % stat for stat in test_stats])
wandb.log({"bti":test_stats[2]})
wandb.save(fname+'.txt')
print(fname + ': ' + one_liner + ' # ' + str(spent_time))
# save all results in binary file
torch.save((result_val_t, result_val_a, model.state_dict(),
val_stats, one_liner, args), fname + '.pt')
return val_stats, test_stats
def main():
# loads a lot of default parser values from the 'parser' file
parser = file_parser.get_parser()
# get args from parser as an object
args = parser.parse_args()
# initialize seeds
misc_utils.init_seed(args.seed)
# set up loader
# 2 options: class_incremental and task_incremental
# experiments in the paper only use task_incremental
Loader = importlib.import_module('dataloaders.' + args.loader)
# args.loader='task_incremental_loader'
# print('loader stuff', args)
loader = Loader.IncrementalLoader(args, seed=args.seed)
# print('loader stuff after after', args)
n_inputs, n_outputs, n_tasks = loader.get_dataset_info()
# setup logging
# logging is from 'misc_utils.py' from 'utils' folder
timestamp = misc_utils.get_date_time() # this line is redundant bcz log_dir already takes care of it
args.log_dir, args.tf_dir = misc_utils.log_dir(args, timestamp) # stores args into "training_parameters.json"
# load model from the 'model' folder
Model = importlib.import_module('model.' + args.model)
# create the model neural net
model = Model.Net(n_inputs, n_outputs, n_tasks, args)
# make model cuda-ized if possible
if args.cuda:
try: model.net.cuda()
except: pass
# wandb.watch(model)
# run model on loader
if args.model == "iid2":
# oracle baseline with all task data shown at same time
result_val_t, result_val_a, result_test_t, result_test_a, spent_time = life_experience_iid(
model, loader, args)
else:
# for all the CL baselines
result_val_t, result_val_a, result_test_t, result_test_a, spent_time = life_experience(
model, loader, args)
# save results in files or print on terminal
save_results(args, result_val_t, result_val_a, result_test_t, result_test_a, model, spent_time)
if __name__ == "__main__":
main()