-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
279 lines (238 loc) · 13.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import argparse
import logging
import sys
sys.path.append("..")
import torch
torch.backends.cudnn.enable =True
torch.backends.cudnn.benchmark = True
import numpy as np
import random
from torchvision import transforms
from torch.utils.data import DataLoader
from RADF.models.models import RADFREModel, RADFNERModel
from RADF.models.bert_model import HMNeTREModel, HMNeTNERModel
from processor.dataset import MMREProcessor, MMPNERProcessor, MMREDataset, MMPNERDataset
from modules.train import RETrainer, NERTrainer
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# from tensorboardX import SummaryWriter
import wandb
import time
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
MODEL_CLASSES = {
'MRE': RADFREModel,
'twitter15': HMNeTNERModel,
'twitter17': HMNeTNERModel
}
TRAINER_CLASSES = {
'MRE': RETrainer,
'twitter15': NERTrainer,
'twitter17': NERTrainer
}
DATA_PROCESS = {
'MRE': (MMREProcessor, MMREDataset),
'twitter15': (MMPNERProcessor, MMPNERDataset),
'twitter17': (MMPNERProcessor, MMPNERDataset)
}
DATA_PATH = {
'MRE': {
# text data
'train': 'data/RE_data/txt/ours_train.txt',
'dev': 'data/RE_data/txt/ours_val.txt',
'test': 'data/RE_data/txt/ours_test.txt',
# {data_id : object_crop_img_path}
'train_auximgs': 'data/RE_data/txt/mre_train_dict.pth',
'dev_auximgs': 'data/RE_data/txt/mre_dev_dict.pth',
'test_auximgs': 'data/RE_data/txt/mre_test_dict.pth',
# relation json data
're_path': 'data/RE_data/ours_rel2id.json',
# image feature path
'train_imgfeas':'data/RE_data/img_obj_10/img_train_10.pickle',
'dev_imgfeas': 'data/RE_data/img_obj_10/img_val_10.pickle' ,
'test_imgfeas': 'data/RE_data/img_obj_10/img_test_10.pickle'
},
'twitter15': {
# text data
'train': 'data/NER_data/twitter2015/train.txt',
'dev': 'data/NER_data/twitter2015/valid.txt',
'test': 'data/NER_data/twitter2015/test.txt',
# {data_id : object_crop_img_path}
'train_auximgs': 'data/NER_data/twitter2015/twitter2015_train_dict.pth',
'dev_auximgs': 'data/NER_data/twitter2015/twitter2015_val_dict.pth',
'test_auximgs': 'data/NER_data/twitter2015/twitter2015_test_dict.pth'
},
'twitter17': {
# text data
'train': 'data/NER_data/twitter2017/train.txt',
'dev': 'data/NER_data/twitter2017/valid.txt',
'test': 'data/NER_data/twitter2017/test.txt',
# {data_id : object_crop_img_path}
'train_auximgs': 'data/NER_data/twitter2017/twitter2017_train_dict.pth',
'dev_auximgs': 'data/NER_data/twitter2017/twitter2017_val_dict.pth',
'test_auximgs': 'data/NER_data/twitter2017/twitter2017_test_dict.pth'
},
}
# image data
IMG_PATH = {
'MRE': {'train': 'data/RE_data/img_org/train/',
'dev': 'data/RE_data/img_org/val/',
'test': 'data/RE_data/img_org/test'},
'twitter15': 'data/NER_data/twitter2015_images',
'twitter17': 'data/NER_data/twitter2017_images',
}
# auxiliary images
AUX_PATH = {
'MRE':{
'train': 'data/RE_data/img_vg/train/crops',
'dev': 'data/RE_data/img_vg/val/crops',
'test': 'data/RE_data/img_vg/test/crops'
},
'twitter15': {
'train': 'data/NER_data/twitter2015_aux_images/train/crops',
'dev': 'data/NER_data/twitter2015_aux_images/val/crops',
'test': 'data/NER_data/twitter2015_aux_images/test/crops',
},
'twitter17': {
'train': 'data/NER_data/twitter2017_aux_images/train/crops',
'dev': 'data/NER_data/twitter2017_aux_images/val/crops',
'test': 'data/NER_data/twitter2017_aux_images/test/crops',
}
}
# object-level feature
IMG_OBJ_PATH = {
'MRE':{
'train': 'data/RE_data/img_obj/train/',
'dev': 'data/RE_data/img_obj/val/',
'test': 'data/RE_data/img_obj/test/'
},
'twitter15': {
'train': 'data/NER_data/twitter2015_aux_images/train/',
'dev': 'data/NER_data/twitter2015_aux_images/val/',
'test': 'data/NER_data/twitter2015_aux_images/test/',
},
'twitter17': {
'train': 'data/NER_data/twitter2017_obj/train/',
'dev': 'data/NER_data/twitter2017_obj/val/',
'test': 'data/NER_data/twitter2017_obj/test/',
}
}
def set_seed(seed=2021):
"""set random seed"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_name', default='twitter15', type=str, help="The name of dataset.")
parser.add_argument('--bert_name', default='bert-base-uncased', type=str, help="Pretrained language model path")
parser.add_argument('--num_epochs', default=30, type=int, help="num training epochs")
parser.add_argument('--device', default='cuda', type=str, help="cuda or cpu")
parser.add_argument('--batch_size', default=32, type=int, help="batch size")
parser.add_argument('--lr', default=0.00001, type=float, help="learning rate")
parser.add_argument('--warmup_ratio', default=0.01, type=float)
parser.add_argument('--eval_begin_epoch', default=16, type=int, help="epoch to start evluate")
parser.add_argument('--seed', default=1, type=int, help="random seed, default is 1")
parser.add_argument('--prompt_len', default=10, type=int, help="prompt length")
parser.add_argument('--prompt_dim', default=800, type=int, help="mid dimension of prompt project layer")
parser.add_argument('--load_path', default=None, type=str, help="Load model from load_path")
parser.add_argument('--save_path', default=None, type=str, help="save model at save_path")
parser.add_argument('--write_path', default=None, type=str, help="do_test=True, predictions will be write in write_path")
parser.add_argument('--notes', default="", type=str, help="input some remarks for making save path dir.")
parser.add_argument('--use_prompt', action='store_true')
parser.add_argument('--do_train', action='store_true')
parser.add_argument('--only_test', action='store_true')
parser.add_argument('--max_seq', default=128, type=int)
parser.add_argument('--ignore_idx', default=-100, type=int)
parser.add_argument('--sample_ratio', default=1.0, type=float, help="only for low resource.")
# DIME
parser.add_argument('--num_head_FSRU', type=int, default=16, help='Number of heads in Feature Semantic Reasoning Unit')
parser.add_argument('--hid_FSRU', type=int, default=512, help='Hidden size of FeedForward in Feature Semantic Reasoning Unit')
parser.add_argument('--raw_feature_norm_CMRC', default="clipped_l2norm", help='clipped_l2norm|l2norm|clipped_l1norm|l1norm|no_norm|softmax')
parser.add_argument('--lambda_softmax_CMRC', default=4., type=float, help='Attention softmax temperature.')
parser.add_argument('--hid_router', type=int, default=512, help='Hidden size of MLP in routers')
parser.add_argument('--embed_size', default=256, type=int, help='Dimensionality of the joint embedding.')
# Visual Net
parser.add_argument('--img_dim', default=2048, type=int, help='Dimensionality of the image embedding.')
parser.add_argument('--finetune', action='store_true', help='Fine-tune the image encoder.')
parser.add_argument('--cnn_type', default='vgg19', help="""The CNN used for image encoder(e.g. vgg19, resnet152)""")
parser.add_argument('--use_abs', action='store_true', help='Take the absolute value of embedding vectors.')
parser.add_argument('--no_imgnorm', action='store_true', help='Do not normalize the image embeddings.')
parser.add_argument('--drop', type=float, default=0.0, help='Dropout')
args = parser.parse_args()
data_path, img_path, aux_path = DATA_PATH[args.dataset_name], IMG_PATH[args.dataset_name], AUX_PATH[args.dataset_name]
img_objfea = IMG_OBJ_PATH[args.dataset_name]
model_class, Trainer = MODEL_CLASSES[args.dataset_name], TRAINER_CLASSES[args.dataset_name]
data_process, dataset_class = DATA_PROCESS[args.dataset_name]
'''
data_path: {'train': 'data/RE_data/txt/ours_train.txt', 'dev': 'data/RE_data/txt/ours_val.txt', 'test': 'data/RE_data/txt/ours_test.txt', 'train_auximgs': 'data/RE_data/txt/mre_train_dict.pth', 'dev_auximgs': 'data/RE_data/txt/mre_dev_dict.pth', 'test_auximgs': 'data/RE_data/txt/mre_test_dict.pth', 're_path': 'data/RE_data/ours_rel2id.json'}
img_path : {'train': 'data/RE_data/img_org/train/', 'dev': 'data/RE_data/img_org/val/', 'test': 'data/RE_data/img_org/test'}
aux_path : {'train': 'data/RE_data/img_vg/train/crops', 'dev': 'data/RE_data/img_vg/val/crops', 'test': 'data/RE_data/img_vg/test/crops'}
model_class: <class 'models.bert_model.HMNeTREModel'>
Trainer : <class 'modules.train.RETrainer'>
data_process :<class 'processor.dataset.MMREProcessor'>
dataset_class : <class 'processor.dataset.MMREDataset'>
'''
transform = transforms.Compose([
transforms.Resize(256),#改变大小
transforms.CenterCrop(224),#中心裁剪
transforms.ToTensor(),#转化为矩阵
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])#使用Imagenet的均值和标准差是一种常见的做法。 它们是根据数百万张图像计算得出的。 如果要在自己的数据集上从头开始训练,则可以计算新的均值和标准差。 否则,建议使用Imagenet预设模型及其平均值和标准差。
set_seed(args.seed) # set seed, default is 1
if args.save_path is not None: # make save_path dir
# args.save_path = os.path.join(args.save_path, args.dataset_name+"_"+str(args.batch_size)+"_"+str(args.lr)+"_"+args.notes)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path, exist_ok=True)
args.lr = 0.001
args.batch_size = 32
args.num_epochs = 20
print(args)
logdir = "logs/" + args.dataset_name+ "_"+str(args.batch_size) + "_" + str(args.lr) + args.notes
# writer = SummaryWriter(logdir=logdir)
# writer=None
ti = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%Y-%m-%d_%H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
writer = wandb.init(project='RADF',
name=args.dataset_name+"_"+ti,
config=args,
resume='allow')
processor = data_process(data_path, args.bert_name)#<processor.dataset.MMREProcessor object at 0x7effb32043a0>
train_dataset = dataset_class(processor, transform, img_path, aux_path, img_objfea, args.max_seq, sample_ratio=args.sample_ratio, mode='train')#<processor.dataset.MMREDataset object at 0x7eff45369af0>
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)#<torch.utils.data.dataloader.DataLoader object at 0x7eff45369ac0>
dev_dataset = dataset_class(processor, transform, img_path, aux_path, img_objfea, args.max_seq, mode='dev')
dev_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=False, num_workers=1, pin_memory=False)
test_dataset = dataset_class(processor, transform, img_path, aux_path, img_objfea, args.max_seq, mode='test')
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=1, pin_memory=False)
if args.dataset_name == 'MRE': # RE task
re_dict = processor.get_relation_dict()
num_labels = len(re_dict)#{'None': 0, '/per/per/parent': 1, '/per/per/siblings': 2, '/per/per/couple': 3, '/per/per/neighbor': 4, '/per/per/peer': 5, '/per/per/charges': 6, '/per/per/alumi': 7, '/per/per/alternate_names': 8, '/per/org/member_of': 9, '/per/loc/place_of_residence': 10, '/per/loc/place_of_birth': 11, '/org/org/alternate_names': 12, '/org/org/subsidiary': 13, '/org/loc/locate_at': 14, '/loc/loc/contain': 15, '/per/misc/present_in': 16, '/per/misc/awarded': 17, '/per/misc/race': 18, '/per/misc/religion': 19, '/per/misc/nationality': 20, '/misc/misc/part_of': 21, '/misc/loc/held_on': 22}
tokenizer = processor.tokenizer
model = RADFREModel(num_labels, tokenizer, args=args)
trainer = Trainer(train_data=train_dataloader, dev_data=dev_dataloader, test_data=test_dataloader, model=model, processor=processor, args=args, logger=logger, writer=writer)
else: # NER task
label_mapping = processor.get_label_mapping()
label_list = list(label_mapping.keys())
model = HMNeTNERModel(label_list, args)
trainer = Trainer(train_data=train_dataloader, dev_data=dev_dataloader, test_data=test_dataloader, model=model, label_map=label_mapping, args=args, logger=logger, writer=writer)
if args.do_train:
# train
trainer.train()
# test best model
args.load_path = os.path.join(args.save_path, 'best_model.pth')
trainer.test()
if args.only_test:
# only do test
trainer.test()
torch.cuda.empty_cache()
# writer.close()
if __name__ == "__main__":
torch.multiprocessing.set_start_method('spawn')
main()