-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbayeslogreg_gendata.m
44 lines (38 loc) · 1.31 KB
/
bayeslogreg_gendata.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
% Generate synthetic data for the model.
%
% Minjie Xu ([email protected])
function [data, model] = bayeslogreg_gendata(n, d, model)
assert(strcmp([model.id, '_gendata'], mfilename));
if exist('model', 'var')
assert(model.dim == d);
mu = model.param.mu;
sigma = model.param.sigma;
else
P = rand(d);
mu = rand(d, 1);
sigma = P'*P;
end
P = rand(d);
X = mvnrnd(rand(1,d), P*P', n)'; % X is D x N matrix
w = mvnrnd(mu', sigma)'; % w is D x 1 vector
model.param.w = w;
% y = (w'*X >= 0)*2 - 1;
y = (1./(1+exp(-w'*X)) >= rand(1,n))*2 - 1; % y is 1 x N vector consisting of +/- 1 entries
data = struct('x', num2cell(X,1), 'y', num2cell(y), 'yx', num2cell(bsxfun(@times,X,y),1));
% [~,idx] = sort(rand(1,d)*X);
% data = data(idx);
end
% x = [data.x];
% xx = bsxfun(@minus,x,mean(x,2));
% coeff = pca(xx');
% coeff = coeff(:,1:2);
% y = [data.y];
% tdnormvis(coeff'*model.param.mu, coeff'*model.param.sigma*coeff, 3, 15, 'LineWidth', 2);
% hold on;
% scatter(coeff(:,1)'*x(:,y>0), coeff(:,2)'*x(:,y>0), 'ro', 'LineWidth', 1.5);
% hold on;
% scatter(coeff(:,1)'*x(:,y<0), coeff(:,2)'*x(:,y<0), 'bo', 'LineWidth', 1.5);
% legend({'p_0(w)', 'y_i = +1', 'y_i = - 1'}, 'interpreter', 'tex');
% title('synthetic dataset and model prior (projected)');
% xlabel('principal component #1');
% ylabel('principal component #2');