forked from AutoGPTQ/AutoGPTQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quant_with_alpaca.py
178 lines (150 loc) · 6.68 KB
/
quant_with_alpaca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import json
import random
import time
from argparse import ArgumentParser
import torch
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from datasets import Dataset
from transformers import AutoTokenizer, TextGenerationPipeline
def load_data(data_path, tokenizer, n_samples):
with open(data_path, "r", encoding="utf-8") as f:
raw_data = json.load(f)
raw_data = random.sample(raw_data, k=min(n_samples, len(raw_data)))
def dummy_gen():
return raw_data
def tokenize(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
prompts = []
texts = []
input_ids = []
attention_mask = []
for istr, inp, opt in zip(instructions, inputs, outputs):
if inp:
prompt = f"Instruction:\n{istr}\nInput:\n{inp}\nOutput:\n"
text = prompt + opt
else:
prompt = f"Instruction:\n{istr}\nOutput:\n"
text = prompt + opt
if len(tokenizer(prompt)["input_ids"]) >= tokenizer.model_max_length:
continue
tokenized_data = tokenizer(text)
input_ids.append(tokenized_data["input_ids"][: tokenizer.model_max_length])
attention_mask.append(tokenized_data["attention_mask"][: tokenizer.model_max_length])
prompts.append(prompt)
texts.append(text)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"prompt": prompts
}
dataset = Dataset.from_generator(dummy_gen)
dataset = dataset.map(
tokenize,
batched=True,
batch_size=len(dataset),
num_proc=1,
keep_in_memory=True,
load_from_cache_file=False,
remove_columns=["instruction", "input"]
)
dataset = dataset.to_list()
for sample in dataset:
sample["input_ids"] = torch.LongTensor(sample["input_ids"])
sample["attention_mask"] = torch.LongTensor(sample["attention_mask"])
return dataset
def main():
parser = ArgumentParser()
parser.add_argument("--pretrained_model_dir", type=str)
parser.add_argument("--quantized_model_dir", type=str, default=None)
parser.add_argument("--bits", type=int, default=4, choices=[2, 3, 4, 8])
parser.add_argument("--group_size", type=int, default=128, help="group size, -1 means no grouping or full rank")
parser.add_argument("--desc_act", action="store_true", help="whether to quantize with desc_act")
parser.add_argument("--num_samples", type=int, default=128, help="how many samples will be used to quantize model")
parser.add_argument("--save_and_reload", action="store_true", help="whether save quantized model to disk and reload back")
parser.add_argument("--fast_tokenizer", action="store_true", help="whether use fast tokenizer")
parser.add_argument("--use_triton", action="store_true", help="whether use triton to speedup at inference")
parser.add_argument("--per_gpu_max_memory", type=int, default=None, help="max memory used to load model per gpu")
parser.add_argument("--cpu_max_memory", type=int, default=None, help="max memory used to offload model to cpu")
parser.add_argument("--quant_batch_size", type=int, default=1, help="examples batch size for quantization")
parser.add_argument("--trust_remote_code", action="store_true", help="whether to trust remote code when loading model")
args = parser.parse_args()
max_memory = dict()
if args.per_gpu_max_memory is not None and args.per_gpu_max_memory > 0:
if torch.cuda.is_available():
max_memory.update(
{i: f"{args.per_gpu_max_memory}GIB" for i in range(torch.cuda.device_count())}
)
if args.cpu_max_memory is not None and args.cpu_max_memory > 0 and max_memory:
max_memory["cpu"] = f"{args.cpu_max_memory}GIB"
if not max_memory:
max_memory = None
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_dir,
use_fast=args.fast_tokenizer,
trust_remote_code=args.trust_remote_code
)
model = AutoGPTQForCausalLM.from_pretrained(
args.pretrained_model_dir,
quantize_config=BaseQuantizeConfig(bits=args.bits, group_size=args.group_size, desc_act=args.desc_act),
max_memory=max_memory,
trust_remote_code=args.trust_remote_code
)
examples = load_data("dataset/alpaca_data_cleaned.json", tokenizer, args.num_samples)
examples_for_quant = [
{"input_ids": example["input_ids"], "attention_mask": example["attention_mask"]}
for example in examples
]
start = time.time()
model.quantize(
examples_for_quant,
batch_size=args.quant_batch_size,
use_triton=args.use_triton,
autotune_warmup_after_quantized=args.use_triton
)
end = time.time()
print(f"quantization took: {end - start: .4f}s")
if not args.quantized_model_dir:
args.quantized_model_dir = args.pretrained_model_dir
if args.save_and_reload:
model.save_quantized(args.quantized_model_dir)
del model
if torch.cuda.is_available():
torch.cuda.empty_cache()
model = AutoGPTQForCausalLM.from_quantized(
args.quantized_model_dir,
device="cuda:0",
use_triton=args.use_triton,
max_memory=max_memory,
inject_fused_mlp=True,
inject_fused_attention=True,
trust_remote_code=args.trust_remote_code
)
pipeline_init_kwargs = {"model": model, "tokenizer": tokenizer}
if not max_memory:
pipeline_init_kwargs["device"] = "cuda:0"
pipeline = TextGenerationPipeline(**pipeline_init_kwargs)
for example in random.sample(examples, k=min(4, len(examples))):
print(f"prompt: {example['prompt']}")
print("-" * 42)
print(f"golden: {example['output']}")
print("-" * 42)
start = time.time()
generated_text = pipeline(
example['prompt'],
return_full_text=False,
num_beams=1,
max_length=len(example["input_ids"]) + 128 # use this instead of max_new_token to disable UserWarning when integrate with logging
)[0]['generated_text']
end = time.time()
print(f"quant: {generated_text}")
num_new_tokens = len(tokenizer(generated_text)["input_ids"])
print(f"generate {num_new_tokens} tokens using {end-start: .4f}s, {num_new_tokens / (end - start)} tokens/s.")
print("=" * 42)
if __name__ == "__main__":
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
main()