-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·661 lines (549 loc) · 29.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import os
from oclok_ucb import OCLOK_UCB
from problem_models.movielens_problem_model import MovielensProblemModel
# disable cuda because joblib does not work well with cuda
from problem_models.synth_problem_model_old import SyntheticProblemModelOld
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # disable tensorflow printing logging messages
from tcgp_ucb import TCGP_UCB
import multiprocessing
import pickle
import argparse
from scipy.interpolate import make_interp_spline
from problem_models.synth_problem_model import SyntheticProblemModel
import gpflow
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from joblib import Parallel, delayed
from tqdm import tqdm
from ACC_UCB import ACCUCB
from Hypercube import Hypercube
from benchmark_algo import Benchmark
sns.set_theme(style='whitegrid')
# taken from https://jwalton.info/Embed-Publication-Matplotlib-Latex
tex_fonts = {
# Use LaTeX to write all text
"text.usetex": True,
"font.serif": 'Times New Roman',
# # Use 10pt font in plots, to match 10pt font in document
"axes.labelsize": 16,
"font.size": 16,
# # Make the legend/label fonts a little smaller
# "legend.fontsize": 11,
"legend.fontsize": 8,
"xtick.labelsize": 16,
"ytick.labelsize": 16
}
plt.rcParams.update(tex_fonts)
parser = argparse.ArgumentParser()
parser.add_argument("sim_type", type=str,
help="Which simulation to run. 'main_synth' runs the main paper synthetic simulations, "
"'main_real' runs the main paper real-world simulations based on the MovieLens dataset,"
"and 'supp_synth' runs the supplementary synthetic simulations (changing zeta).")
parser.add_argument("--use_saved_dataset", default=False, action="store_true",
help="Whether to use the pre-generated"
"datasets on which the paper was "
"run to run the simulations. If "
"this is set to True, "
"then the pre-generated datasets "
"must be downloaded from the link "
"in the README.md file and put "
"into the root directory where "
"this script is.")
parser.add_argument("--only_plot", default=False, action="store_true",
help="If set to True, will NOT rerun simulations and only plot results from already run "
"simulations. If True, simulations must have been already run before at some point.")
parser.add_argument("--num_repeats", type=int, default=8, required=False,
help="Number of times to repeat the simulation and average over results.")
parser.add_argument("--num_threads", type=int, default=8, required=False,
help="Number of parallel processes to launch to run each independent run. Ideally should be a "
"divisor of num_repeats. If set to -1, as many processes as thread count will be launched.")
args = parser.parse_args()
# run types
SINGLE_ROUND = 'single_round'
DIFFERENT_ZETA = 'diff_zeta'
# problem model types
SYNTHETIC_MODEL = "gp"
FED_MODEL = "fed"
MOVIELENS_MODEL = "ml"
if args.sim_type == "main_synth":
running_mode = SINGLE_ROUND
model_type = FED_MODEL
context_dim = 1
exp_num_clients = 50
num_requests_per_client = 30
exp_max_num_reqs = 5
budget = 5
noise_std = np.sqrt(1e-5)
zeta = 0.5
elif args.sim_type == "supp_synth":
running_mode = DIFFERENT_ZETA
model_type = SYNTHETIC_MODEL
exp_num_group = 50
num_locations = 10
num_users_in_loc = 100
exp_num_movies_in_group = 5
context_dim = 1
synth_kernel = gpflow.kernels.SquaredExponential(1, 0.5)
noise_std = 0.1
budget = 10
max_num_basearms = 400
zeta_list = np.linspace(0.001, 1 - 0.001, 5)
elif args.sim_type == "main_real":
running_mode = SINGLE_ROUND
model_type = MOVIELENS_MODEL
exp_left_nodes = 75 # i.e., expected number of movies in each round
exp_right_nodes = 200 # i.e., expected number of users in each round
max_num_basearms = 150
budget = movielens_budget = 5
ml_num_locations = 10
noise_std = 0.05
context_dim = 1
noise_std = np.sqrt(1e-5)
zeta = 0.5
else:
raise RuntimeError(
"sim_type must be one of 'main_synth', 'main_real', or 'supp_synth', but was {}".format(args.sim_type))
use_generated_setup = args.use_saved_dataset
num_threads_to_use = args.num_threads
if num_threads_to_use == -1:
num_threads_to_use = int(multiprocessing.cpu_count())
use_saved_data = args.only_plot # when True, the script simply plots the data of the most recently ran simulation, if available
# this means that no simulations are run when True.
num_times_to_run = args.num_repeats
num_rounds_arr = np.linspace(10, 200, 14).astype(int)
# TCGP-UCB params
delta = 0.05
# acc-ucb params
v1 = np.sqrt(context_dim)
v2 = 1
rho = 0.5
N = 2 ** context_dim
root_hypercube = Hypercube(1, np.full(context_dim, 0.5)) # this is called x_{0,1} in the paper
reference_algo = "Benchmark"
mc_name = "AOM-MC"
acc_name = "ACC-UCB"
mab_name = "CC-MAB"
gp_name = "TCGP-UCB"
bench_name = "Benchmark"
def run_one_try(problem_model, zeta, run_gp=True):
oclock_kernel = None
inducing_pts = [2, 5, 10, 20]
algo_result_dict = {}
if run_gp:
print('Running Benchmark...')
# bench_algo = Benchmark(problem_model, budget)
# algo_result_dict[bench_name] = bench_algo.run_algorithm()
# # save benchmark choices to be used later when computing regret
# problem_model.set_benchmark_info(algo_result_dict[bench_name]["bench_slate_list"],
# algo_result_dict[bench_name]["num_avai_groups"])
print("Running ACC-UCB...")
acc_ucb_algo = ACCUCB(problem_model, v1, v2, N, rho, root_hypercube, budget)
algo_result_dict[acc_name] = acc_ucb_algo.run_algorithm()
for inducing_pt in inducing_pts:
print(f"Running S{gp_name}...")
ccgp_ucb_algo = OCLOK_UCB(problem_model, context_dim, budget, delta, max_num_basearms, use_sparse=True,
num_inducing=inducing_pt, noise_variance=noise_std ** 2)
algo_result_dict[
rf"S{gp_name}"] = ccgp_ucb_algo.run_algorithm()
return algo_result_dict
def run_once_num_round(num_rounds):
problem_model = SyntheticProblemModel(num_rounds, exp_num_clients, num_requests_per_client, exp_max_num_reqs,
budget,
noise_std, context_dim, use_generated_setup)
# problem_model = SyntheticProblemModel(num_rounds, exp_num_workers, use_generated_setup,
# round_budget, noise_std, context_dim,
# gpflow.kernels.SquaredExponential())
# problem_model = GPProblemModel(num_rounds, max(exp_num_workers), root_hypercube.get_dimension(), use_generated_setup)
# problem_model = GowallaProblemModel(num_rounds, max(exp_num_workers), use_generated_setup)
# problem_model = TestProblemModel(num_rounds, max(exp_num_workers), use_generated_setup)
print("Running GP on {thread_count} threads".format(thread_count=num_threads_to_use))
parallel_results = Parallel(n_jobs=num_threads_to_use)(
delayed(run_one_try)(problem_model, i) for i in range(num_times_to_run))
with open("{}_parallel_results_rounds_{}".format(model_type, num_rounds), 'wb') as output:
pickle.dump(parallel_results, output, pickle.HIGHEST_PROTOCOL)
return parallel_results
#
# def run_for_diff_num_rounds():
# if not use_generated_setup: # load problem model with max num rounds
# if model_type == FOURSQUARE_MODEL:
# problem_model = FoursquareProblemModel(max(num_rounds_arr), exp_num_workers, False, round_budget, noise_std)
# elif model_type == MOVIELENS_MODEL:
# problem_model = MovielensProblemModel(max(num_rounds_arr), exp_left_nodes, exp_right_nodes, False,
# movielens_budget)
# else:
# raise RuntimeError("No such model type!")
# parallel_results_list = []
# for num_rounds in tqdm(num_rounds_arr):
# problem_model = FoursquareProblemModel(num_rounds, exp_num_workers, True, round_budget, noise_std)
# if model_type == FOURSQUARE_MODEL:
# problem_model = FoursquareProblemModel(num_rounds, exp_num_workers, True, round_budget, noise_std)
# elif model_type == MOVIELENS_MODEL:
# problem_model = MovielensProblemModel(num_rounds, exp_left_nodes, exp_right_nodes, True, movielens_budget)
# else:
# raise RuntimeError("No such model type!")
# # problem_model = GPProblemModel(num_rounds, max(exp_num_workers), root_hypercube.get_dimension(), use_generated_setup)
# # problem_model = GowallaProblemModel(num_rounds, max(exp_num_workers), use_generated_setup)
# # problem_model = TestProblemModel(num_rounds, max(exp_num_workers), use_generated_setup)
#
# print("Running GP on {thread_count} threads".format(thread_count=num_threads_to_use))
# print("Doing {} many rounds...".format(num_rounds))
# parallel_results = Parallel(n_jobs=num_threads_to_use)(
# delayed(run_one_try)(problem_model, i) for i in range(num_times_to_run))
# parallel_results_list.append(parallel_results)
#
# with open("{}_parallel_results_rounds_{}".format(model_type, num_rounds), 'wb') as output:
# pickle.dump(parallel_results, output, pickle.HIGHEST_PROTOCOL)
# return parallel_results_list
def plot_cum_regret(results_list):
algo_names = list(results_list[0][0].keys())
num_Ts = len(results_list)
cum_regret_arr = np.zeros((len(algo_names), len(results_list[0]), num_Ts)) # algo, repeat, T
for i, results in enumerate(results_list):
for j, result in enumerate(results):
for k, algo_name in enumerate(algo_names):
algo_dict = result[algo_name]
final_regret = np.cumsum(algo_dict['regret_arr'])[-1]
cum_regret_arr[k, j, i] = final_regret
cum_regret_avg = cum_regret_arr.mean(axis=1)
cum_regret_std = cum_regret_arr.std(axis=1)
plt.figure(figsize=(6.4, 4))
for i, algo_name in enumerate(algo_names):
if algo_name != reference_algo:
color = next(plt.gca()._get_lines.prop_cycler)['color']
mean, std = cum_regret_avg[i], cum_regret_std[i]
plt.plot(num_rounds_arr, mean, label=algo_name, color=color)
plt.fill_between(num_rounds_arr, mean - std, mean + std, alpha=0.3, color=color)
plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
plt.legend()
plt.xlabel("Number of rounds ($T$)")
plt.ylabel("Cumulative regret")
plt.tight_layout()
plt.savefig("cum_regret.pdf", bbox_inches='tight', pad_inches=0.03)
def get_reward_reg_time_from_result(parallel_results, algo_names):
algo_reward_dict = {}
algo_s_regret_dict = {}
algo_g_regret_dict = {}
algo_time_dict = {}
algo_good_grp_dict = {}
num_times_to_run = len(parallel_results)
for i, entry in enumerate(parallel_results):
for algo_name in algo_names:
result = entry[algo_name]
if algo_name not in algo_reward_dict:
num_rounds = len(result['total_reward_arr'])
algo_reward_dict[algo_name] = np.zeros((num_times_to_run, num_rounds))
algo_s_regret_dict[algo_name] = np.zeros((num_times_to_run, num_rounds))
algo_g_regret_dict[algo_name] = np.zeros((num_times_to_run, num_rounds))
algo_time_dict[algo_name] = np.zeros((num_times_to_run, num_rounds))
algo_good_grp_dict[algo_name] = np.zeros((num_times_to_run, num_rounds))
algo_reward_dict[algo_name][i] = pd.Series(result['total_reward_arr']).expanding().mean().values
# algo_reward_dict[algo_name][i] = np.cumsum(result['total_reward_arr'])
if algo_name != reference_algo:
algo_s_regret_dict[algo_name][i] = np.cumsum(result['superarm_regret_arr'])
algo_g_regret_dict[algo_name][i] = np.cumsum(result['group_regret_arr'])
algo_time_dict[algo_name][i] = np.cumsum(result['time_taken_arr'])
algo_good_grp_dict[algo_name][i] = result['percent_bad_groups_arr']
for algo_name in algo_names:
if algo_name != reference_algo:
algo_reward_dict[algo_name][i] /= algo_reward_dict[reference_algo][i]
return algo_reward_dict, algo_s_regret_dict, algo_g_regret_dict, algo_time_dict, algo_good_grp_dict
def plot_reward_and_time(parallel_results):
algo_names = list(parallel_results[0].keys())
num_rounds = len(parallel_results[0][algo_names[0]]['total_reward_arr'])
plot_names = algo_names
algo_reward_dict, algo_s_regret_dict, algo_g_regret_dict, algo_time_dict, algo_good_grp_dict = get_reward_reg_time_from_result(
parallel_results, algo_names)
algo_reward_avg_dict = {}
algo_reward_std_dict = {}
algo_s_regret_avg_dict = {}
algo_s_regret_std_dict = {}
algo_g_regret_avg_dict = {}
algo_g_regret_std_dict = {}
algo_time_avg_dict = {}
algo_time_std_dict = {}
algo_good_groups_avg_dict = {}
algo_good_groups_std_dict = {}
for algo_name in algo_names:
algo_reward_avg_dict[algo_name] = algo_reward_dict[algo_name].mean(axis=0)
algo_reward_std_dict[algo_name] = 1 * algo_reward_dict[algo_name].std(axis=0)
algo_s_regret_avg_dict[algo_name] = algo_s_regret_dict[algo_name].mean(axis=0)
algo_s_regret_std_dict[algo_name] = 1 * algo_s_regret_dict[algo_name].std(axis=0)
algo_g_regret_avg_dict[algo_name] = algo_g_regret_dict[algo_name].mean(axis=0)
algo_g_regret_std_dict[algo_name] = 1 * algo_g_regret_dict[algo_name].std(axis=0)
algo_time_avg_dict[algo_name] = algo_time_dict[algo_name].mean(axis=0)
algo_time_std_dict[algo_name] = 1 * algo_time_dict[algo_name].std(axis=0)
algo_good_groups_avg_dict[algo_name] = algo_good_grp_dict[algo_name].mean(axis=0)
algo_good_groups_std_dict[algo_name] = 1 * algo_good_grp_dict[algo_name].std(axis=0)
xnew = np.arange(1, num_rounds + 1)
# smooth
# xnew = np.linspace(1, num_rounds, 75)
spl = make_interp_spline(range(1, num_rounds + 1), algo_reward_avg_dict[algo_name], k=3)
algo_reward_avg_dict[algo_name] = spl(xnew)
spl = make_interp_spline(range(1, num_rounds + 1), algo_reward_std_dict[algo_name], k=3)
algo_reward_std_dict[algo_name] = spl(xnew)
algo_reward_avg_dict[algo_name][0] = algo_reward_std_dict[algo_name][0] = 0
# PLOT AVERAGE REWARD
plt.figure(figsize=(6.4, 3.5))
for i, algo_name in enumerate(algo_names):
if algo_name != reference_algo:
color = next(plt.gca()._get_lines.prop_cycler)['color']
mean, std = algo_reward_avg_dict[algo_name], algo_reward_std_dict[algo_name]
plt.plot(xnew, mean, label=plot_names[i], color=color)
plt.fill_between(xnew, mean - std, mean + std, alpha=0.3, color=color)
plt.legend()
# plt.xlim(0, 200)
plt.ylim(0, 1) # We need to do this b/c otherwise the legend was not seen
plt.xlabel("Arriving task $(t)$")
plt.ylabel("Average task reward divided by\nbenchmark reward up to task $t$")
plt.tight_layout()
plt.savefig("avg_reward.pdf", bbox_inches='tight', pad_inches=0.02)
# PLOT TIME TAKEN
plt.figure(figsize=(6.4, 4))
for algo_name in algo_names:
if algo_name != reference_algo:
color = next(plt.gca()._get_lines.prop_cycler)['color']
mean, std = algo_time_avg_dict[algo_name], algo_time_std_dict[algo_name]
plt.plot(range(1, 1 + num_rounds), mean, label=algo_name.replace("CCGP-UCB", "O'CLOK-UCB"), color=color)
plt.fill_between(range(1, 1 + num_rounds), mean - std, mean + std, alpha=0.3, color=color)
plt.legend()
# plt.xlim(0, 200)
# plt.ylim(0.95, 1) # We need to do this b/c otherwise the legend was not seen
plt.xlabel("Arriving task $(t)$")
plt.ylabel("Time taken (s)")
plt.tight_layout()
plt.savefig("time_taken.pdf", bbox_inches='tight', pad_inches=0.02)
# PLOT SUPERARM REGRET
fig, ax1 = plt.subplots(figsize=(6.4, 3.5))
color1 = next(plt.gca()._get_lines.prop_cycler)['color']
color2 = next(plt.gca()._get_lines.prop_cycler)['color']
ax1.set_xlabel("Round ($t$)")
ax1.set_ylabel("Cumulative super arm regret", color=color1)
ax1.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax1.tick_params(axis='y', labelcolor=color1)
ax2 = ax1.twinx()
ax2.set_ylabel("Cumulative group regret", color=color2)
ax2.ticklabel_format(axis="y", style="sci", scilimits=(0, 0))
ax2.tick_params(axis='y', labelcolor=color2)
marker_styles = ['-', '--']
marker_iter = iter(marker_styles)
for i, algo_name in enumerate(algo_names):
if algo_name != reference_algo:
marker = next(marker_iter)
mean, std = algo_s_regret_avg_dict[algo_name], algo_s_regret_std_dict[algo_name]
std = std * 0.1
ax1.plot(xnew, mean, label=plot_names[i], color=color1, linestyle=marker)
ax1.fill_between(xnew, mean - std, mean + std, alpha=0.3, color=color1)
mean, std = algo_g_regret_avg_dict[algo_name], algo_g_regret_std_dict[algo_name]
ax2.plot(xnew, mean, label=plot_names[i], color=color2, linestyle=marker)
ax2.fill_between(xnew, mean - std, mean + std, alpha=0.3, color=color2)
plt.legend()
# plt.xlim(0, 200)
plt.xlabel("Round $(t)$")
plt.tight_layout()
plt.savefig("s_regret.pdf", bbox_inches='tight', pad_inches=0.02)
# PLOT PERCENTAGE OF GOOD GROUPS
plt.figure(figsize=(6.4, 3.5))
for i, algo_name in enumerate(algo_names):
if algo_name != reference_algo:
color = next(plt.gca()._get_lines.prop_cycler)['color']
mean, std = algo_good_groups_avg_dict[algo_name], algo_good_groups_std_dict[algo_name]
plt.plot(xnew, mean, label=plot_names[i], color=color) # TODO REMOVE
plt.fill_between(xnew, mean - std, mean + std, alpha=0.3, color=color)
plt.legend()
# plt.xlim(0, 200)
plt.xlabel("Round $(t)$")
plt.ylabel("Percentage of good groups chosen")
plt.tight_layout()
plt.savefig("group_percent.pdf", bbox_inches='tight', pad_inches=0.02)
def plot_multiple_kernel_reward(final_round_results):
algo_names = list(final_round_results[0][0].keys())
num_rounds = len(final_round_results[0][0][algo_names[0]]['total_reward_arr'])
num_kernels = len(kernel_list)
rewards_arr_avg = np.zeros((len(algo_names), num_kernels, num_rounds))
rewards_arr_std = np.zeros((len(algo_names), num_kernels, num_rounds))
for i, results in enumerate(final_round_results):
algo_reward_dict, algo_regret_dict, algo_time_dict = get_reward_reg_time_from_result(results, algo_names)
for j, algo_name in enumerate(algo_names):
rewards_arr_avg[j, i, :] = algo_reward_dict[algo_name].mean(axis=0)
rewards_arr_std[j, i, :] = algo_reward_dict[algo_name].std(axis=0)
f, axes = plt.subplots(2, 3, figsize=(15, 9))
x = np.arange(1, num_rounds + 1)
for i, algo_name in enumerate([x for x in algo_names if x != reference_algo]):
index = np.unravel_index(i, (2, 3))
algo_index = algo_names.index(algo_name)
for j in range(num_kernels):
color = next(axes[index]._get_lines.prop_cycler)['color']
mean, std = rewards_arr_avg[algo_index, j], rewards_arr_std[algo_index, j]
axes[index].plot(x, mean,
label="Outcome kernel $l= {:.2f}$".format(kernel_lengthscales[j]),
linewidth=2, color=color)
axes[index].fill_between(x, mean - std, mean + std, alpha=0.3, linewidth=2, color=color)
axes[index].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
axes[index].set_title(algo_name, fontsize=16)
axes[index].legend()
axes[index].set_ylim([-0.3, 1.0])
axes[index].set_xlabel("Round number $(t)$", fontsize=16)
# if i == 0:
axes[index].set_ylabel("Average task reward divided\nby benchmark reward up to $t$", fontsize=16)
# axes[-1, -1].set_visible(False)
f.tight_layout()
f.savefig("multi_kernel_reward.pdf", bbox_inches='tight', pad_inches=0.02)
# for i, algo_name in enumerate(algo_names):
# if algo_name != reference_algo:
# plt.figure()
# for j in range(num_kernels):
# plt.errorbar(range(1, num_rounds + 1), rewards_arr_avg[i, j], yerr=rewards_arr_std[i, j],
# label="Outcome kernel $l= {:.2f}$".format(kernel_lengthscales[j]), capsize=2, linewidth=2)
# plt.legend()
# plt.xlabel("Round number $(t)$")
# plt.ylabel("Average task reward divided\nby benchmark reward up to $t$")
# plt.ylim([-0.3, 1.0])
# plt.tight_layout()
# plt.savefig("{}_reward.pdf".format(algo_name), bbox_inches='tight', pad_inches=0.02)
# plt.show()
def get_reg_from_multi_round(results_list, gp_alg_names, algo_names, num_Ts):
non_gp_alg_names = [x for x in algo_names if x not in gp_alg_names]
cum_regret_arr = np.zeros((len(algo_names), len(results_list[0]), num_Ts)) # algo, repeat, T
for i, results in enumerate(results_list):
for j, result in enumerate(results):
if i == len(results_list) - 1: # last result is one with most num rounds so GP algs will be included
for k, algo_name in enumerate(gp_alg_names):
algo_dict = result[algo_name]
for m, final_T in enumerate(num_rounds_arr):
cum_regret_arr[algo_names.index(algo_name), j, m] = np.cumsum(algo_dict['regret_arr'])[
final_T - 1]
for k, algo_name in enumerate(non_gp_alg_names):
algo_dict = result[algo_name]
final_regret = np.cumsum(algo_dict['regret_arr'])[-1]
cum_regret_arr[algo_names.index(algo_name), j, i] = final_regret
return cum_regret_arr
def plot_multiple_kernel_reg(all_results_list): # kernel -> different Ts -> different repeats -> algo result
algo_names = [x for x in all_results_list[0][-1][0].keys() if x != reference_algo]
gp_alg_names = [x for x in algo_names if gp_name in x]
num_kernels = len(kernel_list)
num_Ts = len(all_results_list[0])
regret_arr_avg = np.zeros((len(algo_names), num_kernels, num_Ts))
regret_arr_std = np.zeros((len(algo_names), num_kernels, num_Ts))
for i, results in enumerate(all_results_list):
cum_regret_arr = get_reg_from_multi_round(results, gp_alg_names, algo_names, num_Ts)
regret_arr_avg[:, i, :] = cum_regret_arr.mean(axis=1)
regret_arr_std[:, i, :] = cum_regret_arr.std(axis=1)
f, axes = plt.subplots(2, 3, figsize=(15, 9))
for i, algo_name in enumerate(algo_names):
index = np.unravel_index(i, (2, 3))
for j in range(num_kernels):
color = next(axes[index]._get_lines.prop_cycler)['color']
mean, std = regret_arr_avg[i, j], regret_arr_std[i, j]
axes[index].plot(num_rounds_arr, mean,
label="Outcome kernel $l= {:.2f}$".format(kernel_lengthscales[j]),
linewidth=2, color=color)
axes[index].fill_between(num_rounds_arr, mean - std, mean + std, alpha=0.3, linewidth=2, color=color)
axes[index].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
axes[index].set_title(algo_name, fontsize=16)
axes[index].legend()
axes[index].set_ylim([-10, 3.2e3])
t = axes[index].yaxis.get_offset_text()
t.set_x(-0.05)
axes[index].set_xlabel("Number of rounds $(T)$", fontsize=16)
axes[index].set_ylabel("Cumulative regret", fontsize=16)
f.tight_layout()
plt.savefig("multi_kernel_reg.pdf", bbox_inches='tight', pad_inches=0.02)
#
# def run_with_diff_kernel(rounds_arr, kernel_list):
# all_results_list = []
# for i, kernel in enumerate(tqdm(kernel_list)):
# if not use_generated_setup: # load problem model with max num rounds
# problem_model = SyntheticProblemModel(max(rounds_arr), exp_num_workers, False,
# round_budget, noise_std, context_dim,
# kernel, "synthetic_df_{}".format(i))
# parallel_results_list = []
# for num_rounds in rounds_arr:
# problem_model = SyntheticProblemModel(num_rounds, exp_num_workers, True,
# round_budget, noise_std, context_dim,
# kernel, "synthetic_df_{}".format(i))
#
# print("Doing {} many rounds...".format(num_rounds))
#
# # only run GP algos with the largest number of rounds because GP algos are not affected by choice of num_rounds
# parallel_results = Parallel(n_jobs=num_threads_to_use)(
# delayed(run_one_try)(problem_model, run_num=0, run_gp=num_rounds == max(rounds_arr)) for _ in
# range(num_times_to_run))
# parallel_results_list.append(parallel_results)
# all_results_list.append(parallel_results_list)
#
# with open('{}_multiple_kernels_{}'.format(model_type, i), 'wb') as output:
# pickle.dump(parallel_results_list, output, pickle.HIGHEST_PROTOCOL)
# all_results_list.append(parallel_results_list)
# return all_results_list
def run_with_diff_zeta(rounds_arr, zeta_list):
problem_model = SyntheticProblemModelOld(max(rounds_arr), exp_num_group, exp_num_movies_in_group, budget,
noise_std, context_dim, synth_kernel, use_generated_setup)
parallel_results_list = []
for i, zeta in enumerate(tqdm(zeta_list)):
print(f"Doing zeta={zeta}...")
parallel_results = Parallel(n_jobs=num_threads_to_use)(
delayed(run_one_try)(problem_model, zeta=zeta) for _ in range(num_times_to_run))
with open('{}_different_zeta_{}'.format(model_type, zeta), 'wb') as output:
pickle.dump(parallel_results, output, pickle.HIGHEST_PROTOCOL)
parallel_results_list.append([results[f"S{gp_name}"] for results in parallel_results])
return parallel_results_list
def plot_zeta_roc(parallel_results_list, zeta_list):
num_runs = len(parallel_results_list[0])
final_s_regret = np.zeros((len(zeta_list), num_runs))
final_g_regret = np.zeros((len(zeta_list), num_runs))
for i, all_results in enumerate(parallel_results_list):
for j, results in (enumerate(all_results)):
final_s_regret[i, j] = np.cumsum(results["superarm_regret_arr"])[-1]
final_g_regret[i, j] = np.cumsum(results["group_regret_arr"])[-1]
avg_s_regret = final_s_regret.mean(axis=1)
avg_g_regret = final_g_regret.mean(axis=1)
fig = plt.figure(figsize=(6.4, 3.5))
cm = plt.get_cmap("RdPu")
color_list = np.linspace(0.2, 1, len(zeta_list))
for i, (s_reg, g_reg) in enumerate(zip(avg_s_regret, avg_g_regret)):
color = cm(color_list[i])
plt.plot(s_reg, g_reg, 'o', color=color, label=rf"$\zeta={zeta_list[i]:.2f}$")
plt.xlabel("Final super arm regret")
plt.ylabel("Final group regret")
plt.legend()
plt.tight_layout()
plt.savefig("zeta_regret.pdf", bbox_inches='tight', pad_inches=0.03)
def run_ml_sims(num_rounds):
problem_model = MovielensProblemModel(num_rounds, exp_left_nodes, exp_right_nodes,
use_generated_setup, movielens_budget, ml_num_locations)
print("Running GP on {thread_count} threads".format(thread_count=num_threads_to_use))
parallel_results = Parallel(n_jobs=num_threads_to_use)(
delayed(run_one_try)(problem_model, zeta) for _ in range(num_times_to_run))
with open("{}_parallel_results_rounds_{}".format(model_type, num_rounds), 'wb') as output:
pickle.dump(parallel_results, output, pickle.HIGHEST_PROTOCOL)
return parallel_results
if __name__ == '__main__':
if not use_saved_data:
if running_mode == SINGLE_ROUND:
if model_type == SYNTHETIC_MODEL:
parallel_results = run_once_num_round(max(num_rounds_arr))
plot_reward_and_time(parallel_results)
elif model_type == MOVIELENS_MODEL:
parallel_results = run_ml_sims(max(num_rounds_arr))
plot_reward_and_time(parallel_results)
elif running_mode == DIFFERENT_ZETA:
all_results_list = run_with_diff_zeta(num_rounds_arr, zeta_list)
plot_zeta_roc(all_results_list, zeta_list)
else:
if running_mode == SINGLE_ROUND:
with open('{}_parallel_results_rounds_{}'.format(model_type, max(num_rounds_arr)), 'rb') as input_file:
parallel_results = pickle.load(input_file)
plot_reward_and_time(parallel_results)
elif running_mode == DIFFERENT_ZETA:
parallel_results_list = []
for zeta in zeta_list:
with open('{}_different_zeta_{}'.format(model_type, zeta), 'rb') as input_file:
parallel_results = pickle.load(input_file)
if zeta == 1 - 0.001 or len(zeta_list) == 1:
plot_reward_and_time(parallel_results)
parallel_results_list.append([results[f"S{gp_name}"] for results in parallel_results])
plot_zeta_roc(parallel_results_list, zeta_list)
plt.show()