-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuncertainty.py
222 lines (196 loc) · 7.25 KB
/
uncertainty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import json
import os
import sys
try:
import boto3
except ImportError:
from warnings import warn
warn('boto3 may not be installed; running mock library')
class MockDynamodb:
def Table(self, *args, **kwargs):
return table
class MockTable:
creation_date_time = None
def __init__(self):
self.items = []
def put_item(self, *args, **kwargs):
self.items.append([args, kwargs])
dynamodb = MockDynamodb()
table = MockTable()
else:
# Setting library paths.
sys.path.append("/mnt/biosteam-packages")
os.environ[ 'NUMBA_CACHE_DIR' ] = '/tmp/'
from chaospy import distributions as shape
# Create dynamodb resource for posting biosteam outputs
dynamodb = boto3.resource('dynamodb')
# Imports from EFS library mounted to root /mnt/simulate folder /lib/
# =============================================================================
# Lambda Functions
# =============================================================================
def lambda_handler(event, context):
# Parse input and define data variables
jobId = event['jobId']
jobTimestamp = event['jobTimestamp']
param_dict = event['params']
samples_int = event['samples']
sim_type = event['sim_type']
model = event['model'].lower()
if model == 'cornstover':
from biorefineries.cornstover.webapp_model import model
elif model == 'oilcane':
from biorefineries.oilcane.webapp_model import model
# oc.load('O1')
# model = oc.model
# else:
# print("invalid model " + model)
all_parameters = {i.name: i for i in model.parameters}
print(all_parameters)
parameters = []
for item in param_dict:
name = item['name']
if name in all_parameters:
parameter = all_parameters[name]
else:
print(all_parameters)
raise RuntimeError(f'no parameter with name {name}')
parameters.append(parameter)
values = item['values']
if sim_type == 'uncertainty':
distribution = item['distribution'].capitalize()
parameter.baseline = values['baseline']
if distribution == 'Triangular':
lower = values['lower']
midpoint = values['mode']
upper = values['upper']
parameter.distribution = shape.Triangle(lower=lower, midpoint=midpoint, upper=upper)
elif distribution == 'Uniform':
lower = values['lower']
upper = values['upper']
parameter.distribution = shape.Uniform(lower=lower, upper=upper)
else:
raise RuntimeError(f"distribution {distribution} not available yet")
elif sim_type == 'single':
parameter.baseline = values['baseline']
else:
print('Simulation type not implemented:', sim_type)
# Rerun model at baseline to reset cache
baseline_metrics = model.metrics_at_baseline()
# Run model
# results_payload={
# 'jobId': jobId,
# 'jobTimestamp': jobTimestamp,
# # 'results': results_json,
# # 'spearmanResults': spearman_rhos_json,
# }
if sim_type == 'uncertainty':
try:
model.parameters = parameters
samples = model.sample(N=samples_int, rule='L')
model.load_samples(samples)
model.evaluate()
except Exception as e:
raise e
else:
def get_name(metric):
name = metric.name
if metric.units: name += f" [{metric.units}]"
return name
results = model.table
spearman_rhos, ps = model.spearman_r()
param_names = [get_name(i) for i in parameters]
metric_names = [get_name(i) for i in model.metrics]
names = param_names + metric_names
results_dict = {i: j.tolist() for i, j in zip(names, results.values.transpose())}
results_json = json.dumps(results_dict)
spearman_rhos_dict = {col: {row: float(value) for row, value in zip(param_names, values)}
for col, values in zip(metric_names, spearman_rhos.values.transpose())}
spearman_rhos_json = json.dumps(spearman_rhos_dict)
# results_payload['results'] = json.dumps(json.load(results_json, parse_float=Decimal))
# results_payload['spearmanResults'] = json.dumps(json.load(spearman_rhos_json, parse_float=Decimal))
finally:
model.parameters = tuple(all_parameters.values())
elif sim_type == 'single':
def get_name(metric):
name = metric.name
if metric.units: name += f" [{metric.units}]"
return name
baseline_metrics = model.metrics_at_baseline()
metric_names = [get_name(i) for i in model.metrics]
single_results = {i: j for i, j in zip(metric_names, baseline_metrics.values)}
single_results = json.dumps(single_results)
# results_payload['singleResults'] = json.dumps(json.load(single_results, parse_float=Decimal))
else:
print('Simulation type not implemented:', sim_type)
# Add outputs to DynamoDB table: biosteamJobResults
jobTimestamp = int(jobTimestamp)
# Instatiate table
table = dynamodb.Table('biosteam-results')
print(table.creation_date_time)
# Add biosteam results to table
# print(results_payload)
# from warnings import warn
# warn(str(results_payload))
if sim_type == 'uncertainty':
table.put_item(
Item={
'jobId': jobId,
'jobTimestamp': jobTimestamp,
'results': results_json,
'spearmanResults': spearman_rhos_json,
# 'singleResults': single_results
}
)
elif sim_type == 'single':
table.put_item(
Item={
'jobId': jobId,
'jobTimestamp': jobTimestamp,
# 'results': results_json,
# 'spearmanResults': spearman_rhos_json,
'singleResults': single_results
}
)
else:
print("Simulation type not implemented")
# Return job status
return {
'jobId': jobId,
'Processed': 'yes',
}
def test_lambda_handler():
# Just make sure it runs for now
# TODO: Add more rigorous tests
context = None
event = {
'model': 'cornstover',
'jobId': None,
'jobTimestamp': 1,
'params': [
{'name': 'Cornstover price',
'distribution': 'Uniform',
'values': {
'value1': 0.0464,
'value2': 0.0567,
},
},
],
'samples': 50,
}
lambda_handler(event, context)
event = {
'model': 'oilcane',
'jobId': None,
'jobTimestamp': 1,
'params': [
{'name': 'Cane oil content',
'distribution': 'Uniform',
'values': {
'value1': 5,
'value2': 15,
},
},
],
'samples': 50,
}
lambda_handler(event, context)