forked from weiaicunzai/blender_shapenet_render
-
Notifications
You must be signed in to change notification settings - Fork 0
/
render_helper.py
229 lines (177 loc) · 6.78 KB
/
render_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""render_helper.py contains functions that processing
data to the format we want
Available functions:
- load_viewpoint: read viewpoint file, load viewpoints
- load_viewpoints: wrapper function for load_viewpoint
- load_object_lists: return a generator of object file pathes
- camera_location: return a tuple contains camera location (x, y, z)
in world coordinates system
- camera_rot_XYZEuler: return a tuple contains cmera ration
- random_sample_objs: sample obj files randomly
- random_sample_vps: sample vps from viewpoint file
- random_sample_objs_and_vps: wrapper function for sample obj
and viewpoints
author baiyu
"""
import os
import glob
import math
import random
from collections import namedtuple
from settings import *
# need to write outside the function, otherwise pickle can find
# where VP were defined
VP = namedtuple('VP',['azimuth', 'elevation', 'tilt', 'distance'])
Model = namedtuple('Model', ['path', 'vps'])
def load_viewpoint(viewpoint_file):
"""read viewpoints from a file, can only read one file at once
Args:
viewpoint_file: file path to viewpoint file, read only one file
for each function call
Returns:
generator of viewpoint parameters(contains azimuth,elevation,tilt angles and distance)
"""
with open(viewpoint_file) as viewpoints:
for line in viewpoints.readlines():
yield VP(*line.strip().split())
def load_viewpoints(viewpoint_file_list):
"""load multiple viewpoints file from given lists
Args:
viewpoint_file_list: a list contains obj path
a wrapper for load_viewpoint function
Returns:
return a generator contains multiple generators
which contains obj pathes
"""
if isinstance(viewpoint_file_list, str):
vp_file_list = [viewpoint_file_list]
try:
vp_file_list = iter(viewpoint_file_list)
except TypeError:
print("viewpoint_file_list is not an iterable object")
for vp_file in vp_file_list:
yield load_viewpoint(vp_file)
def load_object_lists(category=None):
"""
load object pathes according to the given category
Args:
category:a iterable object contains the category which
we want render
Returns:
generator of gnerators of obj file pathes
"""
#type checking
if not category:
category = g_render_objs
elif isinstance(category, str):
category = [category]
else:
try:
iter(category)
except TypeError:
print("category should be an iterable object")
#load obj file path
for cat in category:
num = g_shapenet_categlory_pair[cat]
search_path = os.path.join(g_shapenet_path, num, '**','*.obj')
yield glob.iglob(search_path, recursive=True)
def camera_location(azimuth, elevation, dist):
"""get camera_location (x, y, z)
you can write your own version of camera_location function
to return the camera loation in the blender world coordinates
system
Args:
azimuth: azimuth degree(object centered)
elevation: elevation degree(object centered)
dist: distance between camera and object(in meter)
Returens:
return the camera location in world coordinates in meters
"""
#convert azimuth, elevation degree to radians
phi = float(elevation) * math.pi / 180
theta = float(azimuth) * math.pi / 180
dist = float(dist)
x = dist * math.cos(phi) * math.cos(theta)
y = dist * math.cos(phi) * math.sin(theta)
z = dist * math.sin(phi)
return x, y, z
def camera_rot_XYZEuler(azimuth, elevation, tilt):
"""get camera rotaion in XYZEuler
Args:
azimuth: azimuth degree(object centerd)
elevation: elevation degree(object centerd)
tilt: twist degree(object centerd)
Returns:
return the camera rotation in Euler angles(XYZ ordered) in radians
"""
azimuth, elevation, tilt = float(azimuth), float(elevation), float(tilt)
x, y, z = 90, 0, 90 #set camera at x axis facing towards object
#twist
#if tilt > 0:
# y = tilt
#else:
# y = 360 + tilt
#latitude
x = x - elevation
#longtitude
z = z + azimuth
return x * math.pi / 180, y * math.pi / 180, z * math.pi / 180
def random_sample_objs(num_per_cat):
"""randomly sample object file from ShapeNet for each
category in global variable g_render_objs, and then
save the result in global variable g_obj_path
Args:
num_per_cat: how many obj file we want to sample per
category
Returns:
vps: a dictionary contains category name and its corresponding
obj file path
"""
obj_path_lists = load_object_lists(g_render_objs)
obj_path_dict = {}
for cat, pathes in zip(g_render_objs, obj_path_lists):
pathes = list(pathes)
random.shuffle(pathes)
samples = random.sample(pathes, num_per_cat)
obj_path_dict[cat] = samples
return obj_path_dict
def random_sample_vps(obj_path_dict, num_per_model):
"""randomly sample vps from vp lists, for each model,
we sample num_per_cat number vps, and save the result to
g_vps
Args:
obj_pathes: result of function random_sample_objs,
contains obj file pathes
num_per_cat: how many view point to sample per model
Returns:
result_dict: a dictionary contains model name and its corresponding
viewpoints
"""
vp_file_lists = [g_view_point_file[name] for name in g_render_objs]
viewpoint_lists = load_viewpoints(vp_file_lists)
obj_file_pathes = [obj_path_dict[name] for name in g_render_objs]
result_dict = {}
for cat, pathes, vps in zip(g_render_objs, obj_file_pathes, viewpoint_lists):
vps = list(vps)
random.shuffle(vps)
models = []
for p in pathes:
samples = random.sample(vps, num_per_model)
models.append(Model(p, samples))
result_dict[cat] = models
return result_dict
def random_sample_objs_and_vps(model_num_per_cat, vp_num_per_model):
"""wrapper function for randomly sample model and viewpoints
and return the result, each category in g_render_objs contains
multiple Model object, each Model object has path and vps attribute
path attribute indicates where the obj file is and vps contains
viewpoints to render the obj file
Args:
model_num_per_cat: how many models you want to sample per category
vp_num_per_model: how many viewpoints you want to sample per model
Returns:
return a dict contains Model objects
"""
obj_path_dict = random_sample_objs(model_num_per_cat)
result_dict = random_sample_vps(obj_path_dict, vp_num_per_model)
return result_dict