Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

about OSCD #4

Closed
Larry-Zheng opened this issue Jul 3, 2020 · 6 comments
Closed

about OSCD #4

Larry-Zheng opened this issue Jul 3, 2020 · 6 comments

Comments

@Larry-Zheng
Copy link
Contributor

Could you tell me your best metrics on OSCD please? Thank you! The official training code get best f1 score at 60.15%. I designed a network with less parameters getting slightly better f1 score at 61%. But I've read a paper using just plain unet which reports f1 score at 75%. I'm a little suspicious and confused. So I just want to ask your opinion on this.

@Larry-Zheng
Copy link
Contributor Author

兄嘚 刚刚看了你github 你应该是国人 我还是说明白一点吧 我是这几天一直在跑OSCD 官方的那个代码最多就train到60% 然后看到一篇文章 叫啥train at cern 貌似是毕业论文的样子 说train到75%了 很迷 所以想问问你 你用你的代码跑OSCD最多跑到多少了

@Larry-Zheng
Copy link
Contributor Author

方便 加个Q吗 我Q:519334736

@Bobholamovic
Copy link
Owner

说实话,我刚刚翻了下实验记录,我好像没在OSCD数据集上做过实验……那时候把接口写好之后就没动过了😂

@Larry-Zheng
Copy link
Contributor Author

说实话,我刚刚翻了下实验记录,我好像没在OSCD数据集上做过实验……那时候把接口写好之后就没动过了😂

哦哦好的 还是想问一下 另外几个数据集你试验出来效果如何

@Bobholamovic
Copy link
Owner

在Air Change数据集上按照原作者的结构我并没有取得很好的效果(也可能是超参数没调好),不过把通道数加倍,dropout去掉之后,得到的结果大概是这样:

Szada

Arch Precision Recall F1-score OA
FC-EF 0.46 0.64 0.53 0.93
FC-Siam-conc 0.42 0.58 0.49 0.93

Tiszadob

Arch Precision Recall F1-score OA
FC-EF 0.65 0.68 0.67 0.92
FC-Siam-conc 0.63 0.66 0.65 0.91

Air Change数据集太小,所以对超参数过于敏感,随便动一下对最后指标影响可能都蛮大。

Season-varying 数据集(这个数据集不推荐使用,原因见这里,另我怀疑这个数据集训练集和测试集有重叠所以指标虚高):

Arch Precision Recall F1-score OA
FC-EF 0.83 0.98 0.90 0.98
FC-Siam-conc 0.85 0.99 0.91 0.98
FC-Siam-diff 0.87 0.98 0.92 0.98

还可以参考其它论文里的指标:

[1] Peng, D., Zhang, Y., & Guan, H. (2019). End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++. Remote Sensing, 11(11), 1382.
[2] Chen, H., & Shi, Z. (2020). A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sensing, 12(10), 1662.
[3] H. Chen, C. Wu, B. Du, & L. Zhang (2019). Deep Siamese Multi-scale Convolutional Network for Change Detection in Multi-temporal VHR Images. In 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp) (pp. 1–4).
[4] Chen, J., Yuan, Z., Peng, J., Chen, L., Huang, H., Zhu, J., et al. (2020). DASNet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images.

@Larry-Zheng
Copy link
Contributor Author

Larry-Zheng commented Jul 8, 2020 via email

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants