forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-tokenizer-random.py
566 lines (476 loc) · 21.5 KB
/
test-tokenizer-random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
# Test libllama tokenizer == AutoTokenizer.
# Brute force random words/text generation.
#
# Sample usage:
#
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
#
from __future__ import annotations
import time
import logging
import argparse
import subprocess
import random
import unicodedata
from pathlib import Path
from typing import Any, Iterator, cast
from typing_extensions import Buffer
import cffi
from transformers import AutoTokenizer, PreTrainedTokenizer
logger = logging.getLogger("test-tokenizer-random")
class LibLlama:
DEFAULT_PATH_LLAMA_H = "./include/llama.h"
DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
self.lib.llama_backend_init()
def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]:
cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
cmd += ["-I" + path for path in path_includes] + [path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0)
source = res.stdout.decode()
ffi = cffi.FFI()
if True: # workarounds for pycparser
source = "typedef struct { } __builtin_va_list;" + "\n" + source
source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
ffi.cdef(source, override=True)
lib = ffi.dlopen(path_libllama)
return (ffi, lib)
def model_default_params(self, **kwargs):
mparams = self.lib.llama_model_default_params()
for k, v in kwargs.items():
setattr(mparams, k, v)
return mparams
def context_default_params(self, **kwargs):
cparams = self.lib.llama_context_default_params()
for k, v in kwargs.items():
setattr(cparams, k, v)
return cparams
class LibLlamaModel:
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
self.lib: Any = libllama.lib
self.ffi = libllama.ffi
if isinstance(mparams, dict):
mparams = libllama.model_default_params(**mparams)
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
if not self.model:
raise RuntimeError("error: failed to load model '%s'" % path_model)
if isinstance(cparams, dict):
cparams = libllama.context_default_params(**cparams)
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
if not self.ctx:
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
self.text_buff = self.ffi.new("uint8_t[]", 1024)
def free(self):
if self.ctx:
self.lib.llama_free(self.ctx)
if self.model:
self.lib.llama_free_model(self.model)
self.ctx = None
self.model = None
self.lib = None
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
encoded_text: bytes = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
while num < 0 and len(self.token_ids) < (16 << 20):
self.token_ids = self.ffi.new("llama_token[]", -2 * num)
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
return list(self.token_ids[0:num])
def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
if len(self.token_ids) < len(ids):
self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
for i, id in enumerate(ids):
self.token_ids[i] = id
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
while num < 0 and len(self.text_buff) < (16 << 20):
self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
class Tokenizer:
def encode(self, text: str) -> list[int]:
raise NotImplementedError
def decode(self, ids: list[int]) -> str:
raise NotImplementedError
class TokenizerGroundtruth (Tokenizer):
def __init__(self, dir_tokenizer: str):
self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
# guess BOS and EOS
ids = self.encode("a")
assert 1 <= len(ids) <= 3
add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
# build vocab
tokens = list(self.model.get_vocab().values())
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
self.vocab = list(sorted(self.vocab))
# tokens and lists
self.special_tokens = list(self.model.all_special_tokens)
self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False)
self.bos_token = self.model.bos_token
self.eos_token = self.model.eos_token
def encode(self, text: str) -> list[int]:
return self.model.encode(text, add_special_tokens=True)
def decode(self, ids: list[int]) -> str:
return self.model.decode(ids, skip_special_tokens=False)
class TokenizerLlamaCpp (Tokenizer):
libllama: LibLlama | None = None
def __init__(self, vocab_file: str):
if not self.libllama:
self.libllama = LibLlama()
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
def encode(self, text: str) -> list[int]:
return self.model.tokenize(text, add_special=True, parse_special=True)
def decode(self, ids: list[int]) -> str:
return self.model.detokenize(ids, remove_special=False, unparse_special=True)
def generator_custom_text() -> Iterator[str]:
"""General tests"""
yield from [
"",
" ",
" ",
" ",
"\t",
"\n",
"\n\n",
"\n\n\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
" (",
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
"3",
"33",
"333",
"3333",
"33333",
"333333",
"3333333",
"33333333",
"333333333",
]
def generator_custom_text_edge_cases() -> Iterator[str]:
"""Edge cases found while debugging"""
yield from [
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
'¼-a', # unicode_ranges_digit, 0x00BC
'½-a', # unicode_ranges_digit, 0x00BD
'¾-a', # unicode_ranges_digit, 0x00BE
'a 〇b', # unicode_ranges_digit, 0x3007
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
'Cửa Việt', # llama-3, ignore_merges = true
'<s>a', # Phi-3 fail
'<unk><|endoftext|><s>', # Phi-3 fail
'a\na', # bert fail
'"`', # falcon
' \u2e4e', # falcon
'\n\x0b ', # falcon
'a\xa0\xa0\x00b', # jina-v2-es
'one <mask>', # jina-v2-es <mask> lstrip=true
'a </s> b', # rstrip phi-3
'a <mask> b', # lstrip jina-v2
'\xa0aC', # deepseek
'\u2029 \uA3E4', # deepseek-llm
"a ?",
'å', # mpt
'\U000ac517', # utf-8 encode error, falcon
'\U000522f4', # utf-8 encode error, starcoder
"<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>",
"<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>",
]
def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
"""Brute force check all vocab words"""
yield from tokenizer.vocab
def generator_ascii_lr_strip() -> Iterator[str]:
WHITESPACES = ["", " ", " "]
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
for char1 in CHARACTERS:
for char2 in CHARACTERS:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield lstrip + char1 + char2 + rstrip
yield lstrip + char1 + rstrip + char2
yield char1 + lstrip + char2 + rstrip
def generator_apostrophe() -> Iterator[str]:
WHITESPACES = ["", " ", " "]
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
for char1 in CHARACTERS:
for char2 in CHARACTERS:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield char1 + lstrip + "'" + rstrip + char2
yield char1 + char2 + lstrip + "'" + rstrip + "z"
yield "a" + lstrip + "'" + rstrip + char1 + char2
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
for token in all_tokens:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield lstrip + token + rstrip
yield "a" + lstrip + token + rstrip
yield lstrip + token + rstrip + "z"
yield "a" + lstrip + token + rstrip + "z"
def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
words = rand.choices(all_tokens, k=500)
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
words.pop(0)
if tokenizer.add_bos_token: # drop all starting BOS
words.pop(0)
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
words.pop(-1)
if tokenizer.add_bos_token: # drop all trailing EOS
words.pop(-1)
yield "".join(words)
def generator_random_chars(iterations=100) -> Iterator[str]:
"""Brute force random text with simple characters"""
NUM_WORDS = 400
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
CHARS = list(sorted(set("""
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
áéíóúàèìòùâêîôûäëïöü
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
""")))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
for _ in range(NUM_WORDS):
k = rand.randint(1, 7)
word = rand.choices(CHARS, k=k)
word.append(rand.choice(WHITESPACES))
text.append("".join(word))
yield "".join(text)
def generator_unicodes() -> Iterator[str]:
"""Iterate unicode characters"""
MAX_CODEPOINTS = 0x30000 # 0x110000
def _valid(cpt):
if cpt >= 0x30000: # unassigned and supplementary
return False
# if cpt == 0x2029: # deepseek-llm
# return False
if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private
return False
return True
characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
yield from characters
def generator_random_unicodes(iterations=100) -> Iterator[str]:
"""Brute force random text with unicode characters"""
NUM_WORDS = 200
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
characters = list(generator_unicodes())
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
for _ in range(NUM_WORDS):
k = rand.randint(1, 7)
word = rand.choices(characters, k=k)
word.append(rand.choice(WHITESPACES))
text.append("".join(word))
yield "".join(text)
def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text with vocab characters"""
vocab_chars = set()
for word in tokenizer.vocab:
vocab_chars.update(word)
vocab_chars = list(sorted(vocab_chars))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = rand.choices(vocab_chars, k=1024)
yield "".join(text)
def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text from vocab words"""
vocab = [w.strip() for w in tokenizer.vocab]
yield from vocab
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
num_words = rand.randint(300, 400)
for i in range(num_words):
k = rand.randint(1, 3)
words = rand.choices(vocab, k=k)
sep = rand.choice(" \n\r\t")
text.append("".join(words) + sep)
yield "".join(text)
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
for i, (a, b) in enumerate(zip(ids1, ids2)):
if a != b:
return i
if len(ids1) == len(ids2):
return -1
return min(len(ids1), len(ids2))
def check_detokenizer(text: str, text1: str, text2: str) -> bool:
if text1 == text2: # equal to TokenizerGroundtruth?
return True
# equal to source text?
if tokenizer1.add_bos_token: # remove BOS
if text2.startswith(tokenizer1.bos_token):
text2 = text2[len(tokenizer1.bos_token):]
if tokenizer1.add_eos_token: # remove EOS
if text2.endswith(tokenizer1.eos_token):
text2 = text2[:-len(tokenizer1.eos_token)]
return text == text2
t_encode1 = 0
t_encode2 = 0
t_decode1 = 0
t_decode2 = 0
t_start = time.perf_counter()
encode_errors = 0
decode_errors = 0
MAX_ERRORS = 10
logger.info("%s: %s" % (generator.__qualname__, "ini"))
for text in generator:
# print(repr(text), text.encode())
# print(repr(text), hex(ord(text[0])), text.encode())
t0 = time.perf_counter()
ids1 = tokenizer1.encode(text)
t1 = time.perf_counter()
ids2 = tokenizer2.encode(text)
t2 = time.perf_counter()
text1 = tokenizer1.decode(ids1)
t3 = time.perf_counter()
text2 = tokenizer2.decode(ids1)
t4 = time.perf_counter()
t_encode1 += t1 - t0
t_encode2 += t2 - t1
t_decode1 += t3 - t2
t_decode2 += t4 - t3
if encode_errors < MAX_ERRORS and ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
logger.error(" Expected: " + str(ids1))
logger.error(" Result: " + str(ids2))
encode_errors += 1
logger.error(f" {encode_errors=}")
if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
i = find_first_mismatch(text1, text2)
text1 = list(text1[max(0, i - 2) : i + 5 + 1])
text2 = list(text2[max(0, i - 2) : i + 5 + 1])
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
decode_errors += 1
logger.error(f" {decode_errors=}")
if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
# raise Exception()
break
t_total = time.perf_counter() - t_start
logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
def main(argv: list[str] | None = None):
parser = argparse.ArgumentParser()
parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(argv)
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
logger.info(f"VOCABFILE: '{args.vocab_file}'")
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
tokenizer2.model.free()
if __name__ == "__main__":
# main()
if True:
logging.basicConfig(
level = logging.DEBUG,
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
datefmt = "%Y-%m-%d %H:%M:%S",
filename = logger.name + ".log",
filemode = "a"
)
logging.basicConfig(
level = logging.DEBUG,
format = "%(levelname)s %(message)s",
)
path_tokenizers = Path("./models/tokenizers/")
path_vocab_format = "./models/ggml-vocab-%s.gguf"
tokenizers = [
"llama-spm", # SPM
"phi-3", # SPM
"gemma", # SPM
"gemma-2", # SPM
"baichuan", # SPM
"bert-bge", # WPM
"jina-v2-en", # WPM
"llama-bpe", # BPE
"phi-2", # BPE
"deepseek-llm", # BPE
"deepseek-coder", # BPE
"falcon", # BPE
"mpt", # BPE
"starcoder", # BPE
"gpt-2", # BPE
"stablelm2", # BPE
"refact", # BPE
"qwen2", # BPE
"olmo", # BPE
"jina-v2-es", # BPE
"jina-v2-de", # BPE
"smaug-bpe", # BPE
"poro-chat", # BPE
"jina-v2-code", # BPE
"viking", # BPE
"jais", # BPE
]
logger.info("=" * 50)
for tokenizer in tokenizers:
logger.info("-" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'")
vocab_file = Path(path_vocab_format % tokenizer)
dir_tokenizer = path_tokenizers / tokenizer
main([str(vocab_file), str(dir_tokenizer), "--verbose"])