-
Notifications
You must be signed in to change notification settings - Fork 4
/
ImageAnalysis.cpp
512 lines (408 loc) · 12.2 KB
/
ImageAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// ImageAnalysis.cpp: implementation of the CImageAnalysis class.
//
//////////////////////////////////////////////////////////////////////
#include "ImageAnalysis.h"
#include "Util.h"
#include "Pixel.h"
#include <opencv2/imgproc.hpp>
#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;
#endif
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
double CImageAnalysis::getSpatialMoment(cv::Moments moment, int x_order, int y_order)
{
if (x_order + y_order > 3) {
return NULL;
}
if (x_order == 0) {
if (y_order == 0)
return moment.m00;
else if (y_order == 1)
return moment.m01;
else if (y_order == 2)
return moment.m02;
else
return moment.m03;
}
else if (x_order == 1) {
if (y_order == 0)
return moment.m10;
else if (y_order == 1)
return moment.m11;
else
return moment.m12;
}
else if (x_order == 2) {
if (y_order == 0)
return moment.m20;
else
return moment.m21;
}
else {
return moment.m30;
}
}
double CImageAnalysis::getCentralMoment(cv::Moments moment, int x_order, int y_order)
{
if (x_order + y_order > 3) {
return NULL;
}
if (x_order == 0) {
if (y_order == 2)
return moment.mu02;
else
return moment.mu03;
}
else if (x_order == 1) {
if (y_order == 1)
return moment.mu11;
else
return moment.mu12;
}
else if (x_order == 2) {
if (y_order == 0)
return moment.mu20;
else
return moment.mu21;
}
else {
return moment.mu30;
}
}
double CImageAnalysis::getNormalizedCentralMoment(cv::Moments moment, int x_order, int y_order)
{
if (x_order + y_order > 3) {
return NULL;
}
if (x_order == 0) {
if (y_order == 2)
return moment.nu02;
else
return moment.nu03;
}
else if (x_order == 1) {
if (y_order == 1)
return moment.nu11;
else
return moment.nu12;
}
else if (x_order == 2) {
if (y_order == 0)
return moment.nu20;
else
return moment.nu21;
}
else {
return moment.mu30;
}
}
CImageAnalysis::CImageAnalysis()
{
}
CImageAnalysis::~CImageAnalysis()
{
}
// Pryamid : Up-sampling
cv::Mat CImageAnalysis::GS_pyrUp(cv::Mat src_image)
{
cv::Mat dst_image = cv::Mat(src_image.size()*2, src_image.type());
pyrUp(src_image, dst_image, dst_image.size()); // Let's firgure it out!
return dst_image;
}
// Pryamid : Down-sampling
cv::Mat CImageAnalysis::GS_pyrDown(cv::Mat src_image)
{
cv::Mat dst_image = cv::Mat(src_image.size() / 2, src_image.type());
pyrDown(src_image, dst_image, dst_image.size());
return dst_image;
}
// Pryamid : Segmentation
/*
IplImage *CImageAnalysis::GS_prySegmentation( IplImage *src_image,
int level,
double threshold1,
double threshold2 )
{
// 초기화
IplImage *dst_image = cvCreateImage( cvGetSize( src_image ),
IPL_DEPTH_8U,
src_image->nChannels );
//
CvMemStorage* storage = cvCreateMemStorage( 1000 );
CvSeq* comp1 = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvPoint), storage);
CvSeq** comp = &comp1;
// 정방형의 크기어야 함.
cvPyrSegmentation( src_image, dst_image, storage, comp, level, threshold1, threshold2 );
return dst_image;
}
*/
// Pryamid : Mean Shifting
cv::Mat CImageAnalysis::GS_pyrMeanShiftFiltering(cv::Mat src_image, double sp, double sr)
{
CUtil util;
cv::Mat dst_image = util.GS_createImage(src_image.size(), CV_8U, src_image.channels());
cv::pyrMeanShiftFiltering(src_image, dst_image, sp, sr);
return dst_image;
}
// Harris corner detector
cv::Mat CImageAnalysis::GS_cornerHarris(cv::Mat src_image, int block_size, int aperture_size, double k)
{
CUtil util;
if (src_image.channels() != 1) return cv::Mat();
cv::Mat dst_image = cv::Mat(src_image.size(), src_image.type());
cv::Mat corner_image_32F = util.GS_createImage(src_image.size(), CV_32F, src_image.channels());
/* Harris corner detector:
Calculates det(M) - k*(trace(M)^2), where M is 2x2 gradient covariation matrix for each pixel */
cv::cornerHarris(src_image, corner_image_32F, block_size, aperture_size, k);
// 32F -> 8U
cv::convertScaleAbs(corner_image_32F, dst_image, 255, 1);
// 할당한 메모리 해제
corner_image_32F.release();
return dst_image;
}
// Calculates constraint image for corner detection
cv::Mat CImageAnalysis::GS_preCornerDetect(cv::Mat src_image, int aperture_size)
{
CUtil util;
if (src_image.channels() != 1) return cv::Mat();
cv::Mat dst_image = util.GS_createImage(src_image.size(), CV_8U, src_image.channels());
cv::Mat corner_image_32F = util.GS_createImage(src_image.size(), CV_32F, src_image.channels());
/* Calculates constraint image for corner detection
Dx^2 * Dyy + Dxx * Dy^2 - 2 * Dx * Dy * Dxy.
Applying threshold to the result gives coordinates of corners */
cv::preCornerDetect(src_image, corner_image_32F, aperture_size);
// 32F -> 8U
cv::convertScaleAbs(corner_image_32F, dst_image, 255, 1);
// 할당한 메모리 해제
corner_image_32F.release();
return dst_image;
}
// 외곽선 탐색 : cvFindContours() + cvDrawContours()
cv::Mat CImageAnalysis::GS_findContours(cv::Mat src_image)
{
CUtil util;
// 수행 대상은 명암도 영상임.
if (src_image.channels() != 1) return cv::Mat();
// 초기화
cv::Mat tmp_image = src_image.clone();
cv::Mat dst_image = util.GS_createImage(src_image.size(), CV_8U, 3);
cv::cvtColor(src_image, dst_image, cv::COLOR_GRAY2BGR);
std::vector< std::vector<cv::Point> > contours;
/* Retrieves outer and optionally inner boundaries of white (non-zero) connected
components in the black (zero) background */
cv::findContours(tmp_image, contours, cv::RETR_LIST, cv::CHAIN_APPROX_NONE, cv::Point(0, 0));
/* Draws contour outlines or filled interiors on the image */
for (size_t i = 0; i < contours.size(); i++)
{
cv::drawContours(dst_image, contours, (int)i, cv::Scalar(rand() & 255, rand() & 255, rand() & 255), 2, 8);
}
// 할당한 메모리 해제
tmp_image.release();
return dst_image;
}
// Hu Moment
double * CImageAnalysis::GS_getHuMoments(cv::Mat src_image, double threshold)
{
// 수행 대상은 명암도 영상임.
if (src_image.channels() != 1) return NULL;
// 이진화
CPixel cpx;
double max_value = 255.0;
int type = cv::THRESH_BINARY;
cv::Mat binary_image = cpx.GS_threshold(src_image, threshold, max_value, type);
cv::Moments moments;
double * hu_moments = new double[7];
// 모멘트 얻는다.
// moments 두 번째 매개변수 false : 무시
// moments 두 번째 매개변수 true : 0인 값은 0으로, 나머지 값은 1로
moments = cv::moments(binary_image, true);
cv::HuMoments(moments, hu_moments);
// 할당한 메모리 반환
binary_image.release();
return hu_moments;
}
// 공간, 중앙, 정규화된 중앙 모멘트 얻기(불변 모멘트 제외)
double CImageAnalysis::GS_getAllMoments(cv::Mat src_image, double threshold, int type, int xorder, int yorder)
{
// 수행 대상은 명암도 영상임.
if (src_image.channels() != 1) return NULL;
// 이진화
CPixel cPixel;
double max_value = 255.0;
cv::Mat binary_image = cPixel.GS_threshold(src_image, threshold, max_value, cv::THRESH_BINARY);
//
cv::Moments moments;
// 모멘트 얻는다.
// 두 번째 매개변수가 false 인 경우 공간, 중앙, 정규화된 중앙, 불변 모멘트 얻을 수 있다.
moments = cv::moments(src_image, false);
int x_order = 0;
int y_order = 0;
double var = -1.0;
// if x_order = 0, y_order = 0 then u00
// 단, x_order >=0, x_order + y_order <=3 이어야 한다.
// 공간 모멘트
if (type == 0)
{
var = this->getSpatialMoment(moments, x_order, y_order);
}
// 중앙 모멘트
else if (type == 1)
{
var = this->getCentralMoment(moments, x_order, y_order);
}
// 정규화된 중앙 모멘트
else if (type == 2)
{
var = this->getNormalizedCentralMoment(moments, x_order, y_order);
}
// 할당한 메모리 해제
binary_image.release();
return var;
}
// 기본 허프 변환
// http://www-cv.mech.eng.osaka-u.ac.jp/~hamada/openCV/src/sample4-1.cc
cv::Mat CImageAnalysis::GS_basicHoughTransform(cv::Mat src_image)
{
CUtil util;
// 수행 대상은 컬러 영상임.
if (src_image.channels() != 3) return cv::Mat();
cv::Mat tmp_src_image = src_image.clone();
cv::Mat dst_image = src_image.clone();
cv::Mat gray_image = util.GS_createImage(src_image.size(), CV_8U, 1);
cv::Mat edge_image = util.GS_createImage(src_image.size(), CV_8U, 1);
cv::cvtColor(tmp_src_image, gray_image, cv::COLOR_BGR2GRAY);
cv::Canny(gray_image, edge_image, 50, 200, 3);
cv::cvtColor(edge_image, tmp_src_image, cv::COLOR_GRAY2BGR);
std::vector<cv::Vec2f> lines;
cv::HoughLines(edge_image, lines, 1, CV_PI / 180, 70, 0, 0);
for (int i = 0; i<lines.size(); i++)
{
cv::Vec2f line = lines[i];
float rho = line[0];
float theta = line[1];
cv::Point pt1, pt2;
double a = cos(theta), b = sin(theta);
if (fabs(a)<0.001)
{
pt1.x = pt2.x = cvRound(rho);
pt1.y = 0;
pt2.y = tmp_src_image.rows;
}
else if (fabs(b) < 0.001)
{
pt1.y = pt2.y = cvRound(rho);
pt1.x = 0;
pt2.x = tmp_src_image.cols;
}
else
{
pt1.x = 0;
pt1.y = cvRound(rho / b);
pt2.x = cvRound(rho / a);
pt2.y = 0;
}
cv::line(dst_image, pt1, pt2, cv::Scalar(255, 0, 0), 1, 8);
}
return dst_image;
}
cv::Mat CImageAnalysis::GS_basicHoughTransformGray(cv::Mat src_image)
{
CUtil util;
// 수행 대상은 명암도 영상임.
if (src_image.channels() != 1) return cv::Mat();
cv::Mat tmp_src_image;
cv::Mat dst_image; cv::cvtColor(src_image, dst_image, cv::COLOR_GRAY2BGR);
cv::Mat edge_image = util.GS_createImage(src_image.size(), CV_8U, 1);
cv::Canny(src_image, edge_image, 10, 40, 3);
//cv::cvtColor(edge_image, tmp_src_image, cv::COLOR_GRAY2BGR);
std::vector<cv::Vec2f> lines;
cv::HoughLines(edge_image, lines, 1, CV_PI / 180, 70, 0, 0);
for (int i = 0; i<lines.size(); i++)
{
cv::Vec2f line = lines[i];
float rho = line[0];
float theta = line[1];
cv::Point pt1, pt2;
double a = cos(theta), b = sin(theta);
if (fabs(a)<0.001)
{
pt1.x = pt2.x = cvRound(rho);
pt1.y = 0;
pt2.y = tmp_src_image.rows;
}
else if (fabs(b) < 0.001)
{
pt1.y = pt2.y = cvRound(rho);
pt1.x = 0;
pt2.x = tmp_src_image.cols;
}
else
{
pt1.x = 0;
pt1.y = cvRound(rho / b);
pt2.x = cvRound(rho / a);
pt2.y = 0;
}
cv::line(dst_image, pt1, pt2, cv::Scalar(255, 0, 0), 1, 8);
}
return dst_image;
}
// 확률적 허프 변환
// http://www-cv.mech.eng.osaka-u.ac.jp/~hamada/openCV/src/sample4-2.cc
cv::Mat CImageAnalysis::GS_probHoughTransform(cv::Mat src_image)
{
CUtil util;
// 수행 대상은 컬러 영상임.
if (src_image.channels() != 3) return cv::Mat();
cv::Mat tmp_src_image = src_image.clone();
cv::Mat dst_image = src_image.clone();
cv::Mat gray_image = util.GS_createImage(src_image.size(), CV_8U, 1);
cv::Mat edge_image = util.GS_createImage(src_image.size(), CV_8U, 1);
cv::cvtColor(tmp_src_image, gray_image, cv::COLOR_BGR2GRAY);
cv::Canny(gray_image, edge_image, 50, 200, 3);
cv::cvtColor(edge_image, tmp_src_image, cv::COLOR_GRAY2BGR);
std::vector<cv::Vec4i> lines;
cv::HoughLinesP(edge_image, lines, 1, CV_PI / 180, 30, 5, 5);
for (int i = 0; i<lines.size(); i++)
{
cv::Point pt1 = cv::Point(lines[i][0], lines[i][1]);
cv::Point pt2 = cv::Point(lines[i][2], lines[i][3]);
cv::line(dst_image, pt1, pt2, cv::Scalar(255, 0, 0), 1, 8);
}
return dst_image;
}
// 템플릿 매칭(template matching)
// http://www-cv.mech.eng.osaka-u.ac.jp/~hamada/openCV/src/sample15.cc
cv::Mat CImageAnalysis::GS_templateMatching(cv::Mat src_image, cv::Mat template_image)
{
CUtil util;
// 수행 대상은 컬러 영상임.
if (src_image.channels() != 3
|| template_image.channels() != 3)
{
printf("src_image와 template_image의 채널 개수가 일치하지 않습니다!");
return cv::Mat();
}
cv::Mat dst_image = src_image.clone();
cv::Mat matching_image = util.GS_createImage(cv::Size(src_image.cols - template_image.cols + 1
, src_image.rows - template_image.rows + 1)
, CV_32F
, 1);
/* Measures similarity between template and overlapped windows in the source image
and fills the resultant image with the measurements */
cv::matchTemplate(src_image, template_image, matching_image, cv::TM_SQDIFF);
double min_val, max_val;
cv::Point min_loc, max_loc;
cv::minMaxLoc(matching_image, &min_val, &max_val, &min_loc, &max_loc, cv::Mat());
cv::rectangle(dst_image
, min_loc
, cv::Point(min_loc.x + template_image.cols, min_loc.y + template_image.rows)
, cv::Scalar(255, 0, 0)
, 2
, 8
, 0);
return dst_image;
}