forked from dogecoin/dogecoin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coins.cpp
338 lines (302 loc) · 13.7 KB
/
coins.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Copyright (c) 2012-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "coins.h"
#include "memusage.h"
#include "random.h"
#include <assert.h>
/**
* calculate number of bytes for the bitmask, and its number of non-zero bytes
* each bit in the bitmask represents the availability of one output, but the
* availabilities of the first two outputs are encoded separately
*/
void CCoins::CalcMaskSize(unsigned int &nBytes, unsigned int &nNonzeroBytes) const {
unsigned int nLastUsedByte = 0;
for (unsigned int b = 0; 2+b*8 < vout.size(); b++) {
bool fZero = true;
for (unsigned int i = 0; i < 8 && 2+b*8+i < vout.size(); i++) {
if (!vout[2+b*8+i].IsNull()) {
fZero = false;
continue;
}
}
if (!fZero) {
nLastUsedByte = b + 1;
nNonzeroBytes++;
}
}
nBytes += nLastUsedByte;
}
bool CCoins::Spend(uint32_t nPos)
{
if (nPos >= vout.size() || vout[nPos].IsNull())
return false;
vout[nPos].SetNull();
Cleanup();
return true;
}
bool CCoinsView::GetCoins(const uint256 &txid, CCoins &coins) const { return false; }
bool CCoinsView::HaveCoins(const uint256 &txid) const { return false; }
uint256 CCoinsView::GetBestBlock() const { return uint256(); }
bool CCoinsView::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) { return false; }
CCoinsViewCursor *CCoinsView::Cursor() const { return 0; }
CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { }
bool CCoinsViewBacked::GetCoins(const uint256 &txid, CCoins &coins) const { return base->GetCoins(txid, coins); }
bool CCoinsViewBacked::HaveCoins(const uint256 &txid) const { return base->HaveCoins(txid); }
uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); }
void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; }
bool CCoinsViewBacked::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) { return base->BatchWrite(mapCoins, hashBlock); }
CCoinsViewCursor *CCoinsViewBacked::Cursor() const { return base->Cursor(); }
SaltedTxidHasher::SaltedTxidHasher() : k0(GetRand(std::numeric_limits<uint64_t>::max())), k1(GetRand(std::numeric_limits<uint64_t>::max())) {}
CCoinsViewCache::CCoinsViewCache(CCoinsView *baseIn) : CCoinsViewBacked(baseIn), hasModifier(false), cachedCoinsUsage(0) { }
CCoinsViewCache::~CCoinsViewCache()
{
assert(!hasModifier);
}
size_t CCoinsViewCache::DynamicMemoryUsage() const {
return memusage::DynamicUsage(cacheCoins) + cachedCoinsUsage;
}
CCoinsMap::const_iterator CCoinsViewCache::FetchCoins(const uint256 &txid) const {
CCoinsMap::iterator it = cacheCoins.find(txid);
if (it != cacheCoins.end())
return it;
CCoins tmp;
if (!base->GetCoins(txid, tmp))
return cacheCoins.end();
CCoinsMap::iterator ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry())).first;
tmp.swap(ret->second.coins);
if (ret->second.coins.IsPruned()) {
// The parent only has an empty entry for this txid; we can consider our
// version as fresh.
ret->second.flags = CCoinsCacheEntry::FRESH;
}
cachedCoinsUsage += ret->second.coins.DynamicMemoryUsage();
return ret;
}
bool CCoinsViewCache::GetCoins(const uint256 &txid, CCoins &coins) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
if (it != cacheCoins.end()) {
coins = it->second.coins;
return true;
}
return false;
}
CCoinsModifier CCoinsViewCache::ModifyCoins(const uint256 &txid) {
assert(!hasModifier);
std::pair<CCoinsMap::iterator, bool> ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry()));
size_t cachedCoinUsage = 0;
if (ret.second) {
if (!base->GetCoins(txid, ret.first->second.coins)) {
// The parent view does not have this entry; mark it as fresh.
ret.first->second.coins.Clear();
ret.first->second.flags = CCoinsCacheEntry::FRESH;
} else if (ret.first->second.coins.IsPruned()) {
// The parent view only has a pruned entry for this; mark it as fresh.
ret.first->second.flags = CCoinsCacheEntry::FRESH;
}
} else {
cachedCoinUsage = ret.first->second.coins.DynamicMemoryUsage();
}
// Assume that whenever ModifyCoins is called, the entry will be modified.
ret.first->second.flags |= CCoinsCacheEntry::DIRTY;
return CCoinsModifier(*this, ret.first, cachedCoinUsage);
}
/* ModifyNewCoins allows for faster coin modification when creating the new
* outputs from a transaction. It assumes that BIP 30 (no duplicate txids)
* applies and has already been tested for (or the test is not required due to
* BIP 34, height in coinbase). If we can assume BIP 30 then we know that any
* non-coinbase transaction we are adding to the UTXO must not already exist in
* the utxo unless it is fully spent. Thus we can check only if it exists DIRTY
* at the current level of the cache, in which case it is not safe to mark it
* FRESH (b/c then its spentness still needs to flushed). If it's not dirty and
* doesn't exist or is pruned in the current cache, we know it either doesn't
* exist or is pruned in parent caches, which is the definition of FRESH. The
* exception to this is the two historical violations of BIP 30 in the chain,
* both of which were coinbases. We do not mark these fresh so we we can ensure
* that they will still be properly overwritten when spent.
*/
CCoinsModifier CCoinsViewCache::ModifyNewCoins(const uint256 &txid, bool coinbase) {
assert(!hasModifier);
std::pair<CCoinsMap::iterator, bool> ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry()));
if (!coinbase) {
// New coins must not already exist.
if (!ret.first->second.coins.IsPruned())
throw std::logic_error("ModifyNewCoins should not find pre-existing coins on a non-coinbase unless they are pruned!");
if (!(ret.first->second.flags & CCoinsCacheEntry::DIRTY)) {
// If the coin is known to be pruned (have no unspent outputs) in
// the current view and the cache entry is not dirty, we know the
// coin also must be pruned in the parent view as well, so it is safe
// to mark this fresh.
ret.first->second.flags |= CCoinsCacheEntry::FRESH;
}
}
ret.first->second.coins.Clear();
ret.first->second.flags |= CCoinsCacheEntry::DIRTY;
return CCoinsModifier(*this, ret.first, 0);
}
const CCoins* CCoinsViewCache::AccessCoins(const uint256 &txid) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
if (it == cacheCoins.end()) {
return NULL;
} else {
return &it->second.coins;
}
}
bool CCoinsViewCache::HaveCoins(const uint256 &txid) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
// We're using vtx.empty() instead of IsPruned here for performance reasons,
// as we only care about the case where a transaction was replaced entirely
// in a reorganization (which wipes vout entirely, as opposed to spending
// which just cleans individual outputs).
return (it != cacheCoins.end() && !it->second.coins.vout.empty());
}
bool CCoinsViewCache::HaveCoinsInCache(const uint256 &txid) const {
CCoinsMap::const_iterator it = cacheCoins.find(txid);
return it != cacheCoins.end();
}
uint256 CCoinsViewCache::GetBestBlock() const {
if (hashBlock.IsNull())
hashBlock = base->GetBestBlock();
return hashBlock;
}
void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) {
hashBlock = hashBlockIn;
}
bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlockIn) {
assert(!hasModifier);
for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end();) {
if (it->second.flags & CCoinsCacheEntry::DIRTY) { // Ignore non-dirty entries (optimization).
CCoinsMap::iterator itUs = cacheCoins.find(it->first);
if (itUs == cacheCoins.end()) {
// The parent cache does not have an entry, while the child does
// We can ignore it if it's both FRESH and pruned in the child
if (!(it->second.flags & CCoinsCacheEntry::FRESH && it->second.coins.IsPruned())) {
// Otherwise we will need to create it in the parent
// and move the data up and mark it as dirty
CCoinsCacheEntry& entry = cacheCoins[it->first];
entry.coins.swap(it->second.coins);
cachedCoinsUsage += entry.coins.DynamicMemoryUsage();
entry.flags = CCoinsCacheEntry::DIRTY;
// We can mark it FRESH in the parent if it was FRESH in the child
// Otherwise it might have just been flushed from the parent's cache
// and already exist in the grandparent
if (it->second.flags & CCoinsCacheEntry::FRESH)
entry.flags |= CCoinsCacheEntry::FRESH;
}
} else {
// Assert that the child cache entry was not marked FRESH if the
// parent cache entry has unspent outputs. If this ever happens,
// it means the FRESH flag was misapplied and there is a logic
// error in the calling code.
if ((it->second.flags & CCoinsCacheEntry::FRESH) && !itUs->second.coins.IsPruned())
throw std::logic_error("FRESH flag misapplied to cache entry for base transaction with spendable outputs");
// Found the entry in the parent cache
if ((itUs->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) {
// The grandparent does not have an entry, and the child is
// modified and being pruned. This means we can just delete
// it from the parent.
cachedCoinsUsage -= itUs->second.coins.DynamicMemoryUsage();
cacheCoins.erase(itUs);
} else {
// A normal modification.
cachedCoinsUsage -= itUs->second.coins.DynamicMemoryUsage();
itUs->second.coins.swap(it->second.coins);
cachedCoinsUsage += itUs->second.coins.DynamicMemoryUsage();
itUs->second.flags |= CCoinsCacheEntry::DIRTY;
// NOTE: It is possible the child has a FRESH flag here in
// the event the entry we found in the parent is pruned. But
// we must not copy that FRESH flag to the parent as that
// pruned state likely still needs to be communicated to the
// grandparent.
}
}
}
CCoinsMap::iterator itOld = it++;
mapCoins.erase(itOld);
}
hashBlock = hashBlockIn;
return true;
}
bool CCoinsViewCache::Flush() {
bool fOk = base->BatchWrite(cacheCoins, hashBlock);
cacheCoins.clear();
cachedCoinsUsage = 0;
return fOk;
}
void CCoinsViewCache::Uncache(const uint256& hash)
{
CCoinsMap::iterator it = cacheCoins.find(hash);
if (it != cacheCoins.end() && it->second.flags == 0) {
cachedCoinsUsage -= it->second.coins.DynamicMemoryUsage();
cacheCoins.erase(it);
}
}
unsigned int CCoinsViewCache::GetCacheSize() const {
return cacheCoins.size();
}
const CTxOut &CCoinsViewCache::GetOutputFor(const CTxIn& input) const
{
const CCoins* coins = AccessCoins(input.prevout.hash);
assert(coins && coins->IsAvailable(input.prevout.n));
return coins->vout[input.prevout.n];
}
CAmount CCoinsViewCache::GetValueIn(const CTransaction& tx) const
{
if (tx.IsCoinBase())
return 0;
CAmount nResult = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
nResult += GetOutputFor(tx.vin[i]).nValue;
return nResult;
}
bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const
{
if (!tx.IsCoinBase()) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins* coins = AccessCoins(prevout.hash);
if (!coins || !coins->IsAvailable(prevout.n)) {
return false;
}
}
}
return true;
}
double CCoinsViewCache::GetPriority(const CTransaction &tx, int nHeight, CAmount &inChainInputValue) const
{
inChainInputValue = 0;
if (tx.IsCoinBase())
return 0.0;
double dResult = 0.0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
const CCoins* coins = AccessCoins(txin.prevout.hash);
assert(coins);
if (!coins->IsAvailable(txin.prevout.n)) continue;
if (coins->nHeight <= nHeight) {
dResult += (double)(coins->vout[txin.prevout.n].nValue) * (nHeight-coins->nHeight);
inChainInputValue += coins->vout[txin.prevout.n].nValue;
}
}
return tx.ComputePriority(dResult);
}
CCoinsModifier::CCoinsModifier(CCoinsViewCache& cache_, CCoinsMap::iterator it_, size_t usage) : cache(cache_), it(it_), cachedCoinUsage(usage) {
assert(!cache.hasModifier);
cache.hasModifier = true;
}
CCoinsModifier::~CCoinsModifier()
{
assert(cache.hasModifier);
cache.hasModifier = false;
it->second.coins.Cleanup();
cache.cachedCoinsUsage -= cachedCoinUsage; // Subtract the old usage
if ((it->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) {
cache.cacheCoins.erase(it);
} else {
// If the coin still exists after the modification, add the new usage
cache.cachedCoinsUsage += it->second.coins.DynamicMemoryUsage();
}
}
CCoinsViewCursor::~CCoinsViewCursor()
{
}