-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
151 lines (113 loc) · 5.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# MIT License
# Copyright (c) 2021 ashleve
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from typing import List, Optional, Tuple
import hydra
import lightning as L
import pyrootutils
import torch
from lightning import Callback, LightningDataModule, LightningModule, Trainer
from lightning.pytorch.loggers import Logger
from omegaconf import DictConfig
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
# ------------------------------------------------------------------------------------ #
# the setup_root above is equivalent to:
# - adding project root dir to PYTHONPATH
# (so you don't need to force user to install project as a package)
# (necessary before importing any local modules e.g. `from src import utils`)
# - setting up PROJECT_ROOT environment variable
# (which is used as a base for paths in "configs/paths/default.yaml")
# (this way all filepaths are the same no matter where you run the code)
# - loading environment variables from ".env" in root dir
#
# you can remove it if you:
# 1. either install project as a package or move entry files to project root dir
# 2. set `root_dir` to "." in "configs/paths/default.yaml"
#
# more info: https://github.com/ashleve/pyrootutils
# ------------------------------------------------------------------------------------ #
from src import utils
log = utils.get_pylogger(__name__)
@utils.task_wrapper
def train(cfg: DictConfig) -> Tuple[dict, dict]:
"""Trains the model. Can additionally evaluate on a testset, using best weights obtained during
training.
This method is wrapped in optional @task_wrapper decorator, that controls the behavior during
failure. Useful for multiruns, saving info about the crash, etc.
Args:
cfg (DictConfig): Configuration composed by Hydra.
Returns:
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
"""
# set seed for random number generators in pytorch, numpy and python.random
if cfg.get("seed"):
L.seed_everything(cfg.seed, workers=True)
log.info(f"Instantiating datamodule <{cfg.data._target_}>")
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data)
log.info(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model)
log.info("Instantiating callbacks...")
callbacks: List[Callback] = utils.instantiate_callbacks(cfg.get("callbacks"))
log.info("Instantiating loggers...")
logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger"))
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=logger)
object_dict = {
"cfg": cfg,
"datamodule": datamodule,
"model": model,
"callbacks": callbacks,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters!")
utils.log_hyperparameters(object_dict)
if cfg.get("compile"):
log.info("Compiling model!")
model = torch.compile(model)
if cfg.get("train"):
log.info("Starting training!")
trainer.fit(model=model, datamodule=datamodule, ckpt_path=cfg.get("ckpt_path"))
train_metrics = trainer.callback_metrics
if cfg.get("test"):
log.info("Starting testing!")
ckpt_path = trainer.checkpoint_callback.best_model_path
if ckpt_path == "":
log.warning("Best ckpt not found! Using current weights for testing...")
ckpt_path = None
trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path)
log.info(f"Best ckpt path: {ckpt_path}")
test_metrics = trainer.callback_metrics
# merge train and test metrics
metric_dict = {**train_metrics, **test_metrics}
return metric_dict, object_dict
@hydra.main(version_base="1.3", config_path="../configs", config_name="train.yaml")
def main(cfg: DictConfig) -> Optional[float]:
# apply extra utilities
# (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.)
utils.extras(cfg)
# train the model
metric_dict, _ = train(cfg)
# safely retrieve metric value for hydra-based hyperparameter optimization
metric_value = utils.get_metric_value(
metric_dict=metric_dict, metric_name=cfg.get("optimized_metric")
)
# return optimized metric
return metric_value
if __name__ == "__main__":
main()