-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathmarching_cubes_gen.py
291 lines (252 loc) · 8.79 KB
/
marching_cubes_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""Reggenerates the 256 cases needed for the 3D Marching Cubes look up table. There's no need to run this,
the values have already been hard coded into marching_cubes_3d"""
# My convention for vertices is:
VERTICES = [
(0, 0, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),
]
# My convention for the edges
EDGES = [
(0, 1),
(1, 2),
(2, 3),
(3, 0),
(4, 5),
(5, 6),
(6, 7),
(7, 4),
(0, 4),
(1, 5),
(2, 6),
(3, 7),
]
EDGES_BY_VERTSET = {}
for e, (v1, v2) in enumerate(EDGES):
EDGES_BY_VERTSET[frozenset([v1, v2])] = e
# These are the 15 base cases.
# Each key is the bitwise representation of what is solid
# Each value is a list of triples indicating what edges are used for that triangle
# (Recall each edge of the cell may become a vertex in the output boundary)
# Copied up rather tediously from http://users.polytech.unice.fr/~lingrand/MarchingCubes/algo.html
BASE_CASES = {
#
0b00000000: (),
0b00000001: ((8, 0, 3), ),
0b00000011: ((8, 1, 3), (8, 9, 1)),
0b00000101: ((8, 0, 3), (1, 10, 2)),
#
0b01000001: ((8, 0, 3), (10, 5, 6)),
0b00110010: ((8, 7, 0), (0, 7, 1), (1, 7, 5)),
0b01000011: ((8, 1, 3), (8, 9, 1), (10, 5, 6)),
0b01001010: ((3, 2, 11), (0, 9, 1), (10, 5, 6)),
#
0b00110011: ((7, 5, 3), (3, 5, 1)),
0b10110001: ((11, 6, 3), (3, 6, 0), (0, 6, 5), (0, 5, 9)),
0b01101001: ((11, 8, 2), (2, 8, 0), (6, 10, 4), (4, 10, 9)),
0b01110001: ((3, 7, 0), (0, 7, 10), (7, 6, 10), (0, 10, 9)),
#
0b00111010: ((3, 2, 11), (8, 7, 0), (0, 7, 1), (1, 7, 5)),
0b10100101: ((8, 0, 3), (4, 5, 9), (10, 2, 1), (11, 6, 7)),
0b10110010: ((8, 11, 0), (0, 11, 5), (5, 11, 6), (0, 5, 1)),
}
# Normally you can invert the base cases (replace solid with empty and visa versa) to generate more cases
# But this leads to a problem - such flips in 3d can swap the cube edges from one ambiguous configuration
# to another.
#
# *-----o *-----o
# | \ | | / |
# | \ | |/ |
# |\ | | /|
# | \ | | / |
# o-----* o-----*
#
# This will lead to edges not properly lining up when putting adjacent cells together.
# To solve this, we specify a few more cases, that are flips of the above, but with a different arrangement of edges
# See http://users.polytech.unice.fr/~lingrand/MarchingCubes/algo.html
INVERSE_CASES = {
255 - 0b00000101: ((3, 2, 8), (8, 2, 10), (8, 10, 1), (8, 1, 0)),
255 - 0b01000011: ((6, 8, 3), (6, 9, 8), (6, 5, 9), (6, 3, 1), (6, 1, 10)),
255 - 0b01001010: ((3, 11, 0), (0, 11, 6), (0, 6, 9), (9, 6, 5), (1, 10, 2)),
# ?? Docs say these case is needed, but it doesn't appear to be
# 255 - 0b01101001: ((8, 11, 4), (4, 11, 6), (9, 10, 2), (9, 2, 0)),
# 255 - 0b00111010: ((8, 0, 3), (2, 7, 11), (7, 2, 1), (7, 1, 5)),
# ?? Docs say this case is needed, but it looks wrong
#255 - 0b10100101: ((3, 2, 11), (0, 9, 1), (6, 10, 5), (7, 4, 8)),
}
ALL_CASES = BASE_CASES.copy()
# Add INVERSE_CASES to ALL_CASES
for bits, faces in INVERSE_CASES.items():
ALL_CASES[bits] = faces
# Most operations are simply vertex permutations
ROTATE_1 = [
1,
2,
3,
0,
5,
6,
7,
4,
]
ROTATE_2 = [
3,
2,
6,
7,
0,
1,
5,
4
]
ROTATE_3 = [
1,
5,
6,
2,
0,
4,
7,
3,
]
REFLECT = [
1,
0,
3,
2,
5,
4,
7,
6
]
def bits_to_verts(n):
"""Converts from bitwise representation into an array of vertex indices"""
return [v for v in range(8) if 2**v & n > 0]
def verts_to_bits(vs):
"""Converts from an array of vertex indices to a bitwise representation"""
return sum(2**v for v in vs)
def bits_apply(op, n):
"""Applies a vertex permutation operation to a set of vertices in bitwise representation"""
return verts_to_bits(op[v] for v in bits_to_verts(n))
def faces_apply(op, faces, flip):
"""Applies a vertex permutation to a list of faces, optionally flipping the faces"""
return [face_apply(op, face, flip) for face in faces]
def face_apply(op, face, flip):
"""Applies a vertex permutation to a list of edges"""
edges = [edge_apply(op, edge) for edge in face]
if flip: edges = list(reversed(edges))
return edges
def edge_apply(op, edge):
"""Applies a vertex permutation to an edge.
I.e. it permutes both ends of the edge, and finds the new edge that adjoins the two
resulting vertex indices."""
vs = frozenset(op[v] for v in EDGES[edge])
return EDGES_BY_VERTSET[vs]
def compose(*ops):
"""Applies a series of vertex permutations into a single new permutation"""
if len(ops) == 0:
return [0, 1, 2, 3, 4, 5, 6, 7]
if len(ops) == 1:
return ops[0]
if len(ops) == 2:
op1, op2 = ops
return [op2[op1[v]] for v in range(8)]
op1 = ops[0]
rest = ops[1:]
return compose(op1, compose(*rest))
def pow(op, n):
"""Repeats a vertex permutation n times"""
return compose(* ([op] * n))
cases = {}
# Brute force try all combinations of operations to generate new entries in cases
# We try inverting last as all, as we want to prefer using an INVERSE_CASE
# to doing an invert operation, as explained above
for invert in (False, True): # Invert swaps solid for empty and visa versa
for r1 in range(4):
for r2 in range(4):
for r3 in range(4):
for refl in range(2):
op = compose(
pow(ROTATE_1, r1),
pow(ROTATE_2, r2),
pow(ROTATE_3, r3),
pow(REFLECT, refl),
)
# Both REFLECT and invert cause faces to flip
flip = invert ^ (refl == 1)
for bits, faces in ALL_CASES.items():
new_bits = bits_apply(op, bits)
if invert:
new_bits = 255 - new_bits
if new_bits not in cases:
new_faces = faces_apply(op, faces, flip)
cases[new_bits] = new_faces
# Check that we only reference edges that really are between solid and non solid
def test1():
for bits in range(256):
verts = set(bits_to_verts(bits))
all_edges = set(edge for face in cases[bits] for edge in face)
for edge in all_edges:
assert sum(v in verts for v in EDGES[edge]) == 1
def faces_to_edge_pairs(faces):
return [frozenset([face[i], face[(i + 1) % 3]]) for face in faces for i in range(3)]
# Check that each case is manifold (except on the cell boundary)
def test2():
from collections import Counter
for bits in range(256):
edge_pairs = faces_to_edge_pairs(cases[bits])
edge_counts = Counter(edge_pairs)
for edge_pair, count in edge_counts.items():
# Ok, this edge_pair is used by two faces, forming a continuous surface
if count == 2: continue
# Find length squared of edge pair
def d_midpoint(edge):
"""Returns the midpoint of the edge, scaled by 2"""
v0, v1 = EDGES[edge]
v0_pos = VERTICES[v0]
v1_pos = VERTICES[v1]
return ((x+y) for (x,y) in zip(v0_pos, v1_pos))
def length_sq(pos1, pos2):
"""Returns the square of the length of two positions"""
return sum((x-y)**2 for (x,y) in zip(pos1, pos2))
edge1, edge2 = edge_pair
l2 = length_sq(d_midpoint(edge1), d_midpoint(edge2))
if l2 == 2 or l2 == 4:
# These are the lengths of the edge_pairs on the boundary
continue
assert False
# Check that every face with the same solid/non-solid pattern also has the same edge pattern
def test3():
CELL_FACES = [
[0, 1, 2, 3],
[1, 5, 6, 2],
[3, 2, 6, 7],
[4, 0, 3, 7],
[1, 0, 4, 5],
[7, 6, 5, 4],
]
for cell_face in CELL_FACES:
def edge_pair_on_face(edge_pair):
return all(v in cell_face for e in edge_pair for v in EDGES[e])
edges_by_case = {}
for bits in range(256):
edge_pairs = faces_to_edge_pairs(cases[bits])
sub_bits = verts_to_bits(set(cell_face) & set(bits_to_verts(bits)))
sub_edge_pairs = frozenset(filter(edge_pair_on_face, edge_pairs))
if sub_bits in edges_by_case:
assert edges_by_case[sub_bits] == sub_edge_pairs
else:
edges_by_case[sub_bits] = sub_edge_pairs
if __name__ == "__main__":
# Run a few tests that we've generated something sensible
test1()
test2()
test3()
# Dump out the results
import pprint
pprint.pprint([cases[i] for i in range(256)])