-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
90 lines (75 loc) · 2.94 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import sys
import glob
import yaml
import torch
import pprint
from munch import munchify
from models import SoundBoxModel
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.loggers import TensorBoardLogger
def load_config(filepath):
with open(filepath, 'r') as stream:
try:
trainer_params = yaml.safe_load(stream)
return trainer_params
except yaml.YAMLError as exc:
print(exc)
def seed(cfg):
torch.manual_seed(cfg.seed)
if cfg.if_cuda:
torch.cuda.manual_seed(cfg.seed)
def main():
config_filepath = str(sys.argv[1])
checkpoint_filepath = str(sys.argv[2])
checkpoint_filepath = glob.glob(os.path.join(checkpoint_filepath, '*.ckpt'))[0]
cfg = load_config(filepath=config_filepath)
pprint.pprint(cfg)
cfg = munchify(cfg)
seed(cfg)
seed_everything(cfg.seed)
log_dir = '_'.join([cfg.log_dir,
str(cfg.if_sound),
str(cfg.if_vision),
str(cfg.if_depth),
cfg.depth_representation,
cfg.model_name,
str(cfg.if_all_input_data),
cfg.output_representation,
str(cfg.seed)])
model = SoundBoxModel(lr=cfg.lr,
seed=cfg.seed,
if_cuda=cfg.if_cuda,
if_test=True,
gamma=cfg.gamma,
log_dir=log_dir,
train_batch=cfg.train_batch,
val_batch=cfg.val_batch,
test_batch=cfg.test_batch,
num_workers=cfg.num_workers,
in_channels=cfg.in_channels,
model_name=cfg.model_name,
num_branches=cfg.num_branches,
branches_in_channels=cfg.branches_in_channels,
data_filepath=cfg.data_filepath,
shapes=cfg.shapes,
if_sound=cfg.if_sound,
if_vision=cfg.if_vision,
if_depth=cfg.if_depth,
if_all_input_data=cfg.if_all_input_data,
depth_representation=cfg.depth_representation,
output_representation=cfg.output_representation,
lr_schedule=cfg.schedule,
test_hsv_threshold_lst=cfg.test_hsv_threshold_lst)
ckpt = torch.load(checkpoint_filepath)
model.load_state_dict(ckpt['state_dict'])
model.eval()
model.freeze()
trainer = Trainer(gpus=1,
deterministic=True,
amp_backend='native',
default_root_dir=log_dir,
val_check_interval=1.0)
trainer.test(model)
if __name__ == '__main__':
main()