-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathJC_ROIFCstatsPrePain.m
625 lines (586 loc) · 34.6 KB
/
JC_ROIFCstatsPrePain.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% CREATED BY: JOCHEN WEBER
% CREATED ON: 2017-12-13
% MODIFIED WITH ANDY 2018_04_21
%
% USAGE: TESTING FUNCTIONAL CONNECTIVITY AMONG PAIN-RELATED ROIS PRE MOOD MANIPULATION
%
% LATEST MODIFICATION: 2018_06_18
%
% AS OF May 4, 2018, THERE ARE ISSUES WITH THE PSQI DATA
% SUB 161 = WASO SCORE OF -30
% SUB 172 = SLEEP EFFICIENCY SCORE GREATER THAN 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
% BASIC SETUP FOR ANALYSES
% neuroelf library
n = neuroelf;
% SET PRIMARY PATH
rootpath = '/Volumes/Data/Imaging/R01/preprocessed/';
cd(rootpath);
whenRun = datestr(now, 'yyyy-mm-dd_HHMM');
% load variable
% contains slistd! WHICH CONATAINS THE SUBJECT LIST
load FCvars.mat
% load VOI
voi = xff('/Users/jcraggs/Documents/GitHub/Psychometric/ROIs/AALmasks1.voi');
voinames = voi.VOINames;
% indices for pain
painvoi = find(~cellfun('isempty', regexpi(voinames, '^Pain')));
dmnvoi = find(~cellfun('isempty', regexpi(voinames, '^DMN')));
bothvoi = find(~cellfun('isempty', regexpi(voinames, '^Both')));
%voiorder = [pain; dmn];
voiorder = [painvoi; dmnvoi; bothvoi];
nvs = numel(voiorder);
% DETERMINING THE NUMBER OF ROIS FOR EACH NETWORK
painstart = 1;
painend = length(painvoi);
dmnstart = painend + 1;
dmnend = length(painvoi) + length(dmnvoi);
bothstart = dmnend + 1;
bothend = length(bothvoi) + length(painvoi) + length(dmnvoi);
% LIST OUT THE BRAIN REGIONS IN THE PAIN AND DMN NETWORKS
char(voinames(voiorder));
painnames = char(voinames(voiorder(painstart:painend)));
dmnnames = char(voinames(voiorder(dmnstart:dmnend)));
bothnames = char(voinames(voiorder(bothstart:bothend)));
% CLEANING UP ROI NAMES
painnames2 = cellstr(painnames); % CONVERT FROM CHAR TO CELL
dmnnames2 = cellstr(dmnnames); % CONVERT FROM CHAR TO CELL
painExpr = '([A-Z][a-z].+_)(rMNI_)([A-Za-z].+)(_)(roi.nii)'; % REGEX EXPRESSION
dmnExpr = '([A-Z].+_)(rMNI_)([A-Za-z].+)(_)(roi.nii)'; % REGEX EXPRESSION
newROI = '$1$3'; % NEW ROI NAME BASED ON REGEX EXPRESSION ABOVE
painnames2 = regexprep(painnames2, painExpr, newROI);
dmnnames2 = regexprep(dmnnames2, dmnExpr, newROI);
painnames3 = char(painnames2);
dmnnames3 = char(dmnnames2);
% COMBINE BEHAVIORAL AND DEMOGRAPHIC DATA
% THIS NEEDS TO BE DONE BEFORE IDENTIFYING SUBJECTS BELOW
% TO AVOID MISSING DATA
slistdORIG = slistd; % PRESERVE ORIGINAL DATA
slistd = [slistd,struct2array(psqiStruct)]; % ADD BEHAVIORAL DATA
% find subjects in three groups
% COLUMN 3 IDENTIFIES SUBJECT GROUP
% 1=HC, 2=CLBP, 3=FM
g1 = find(slistd(:, 3) == 1 & ~any(isnan(slistd(:, 4:24)), 2));
g2 = find(slistd(:, 3) == 2 & ~any(isnan(slistd(:, 4:24)), 2));
g3 = find(slistd(:, 3) == 3 & ~any(isnan(slistd(:, 4:24)), 2));
g123 = [g1; g2; g3];
g23 = [g2;g3]; % BOTH PAIN GROUPS
i1 = 1:numel(g1);
i2 = i1(end) + (1:numel(g2));
i3 = i2(end) + (1:numel(g3));
i4 = [i2, i3];
ns = numel(g123);
glistd = slistd(g123, :);
rlistd = glistd(:, 4:11);
rlistd2 = glistd(:,[1 3:11]); % KEEP SUBJECT NUMBERS
% GROUP NAMES
gpNames = {'HC','CLBP','FM'}; % ALL THREE GROUPS
gpNames2 = {'HC','Pain'}; % GROUP NAMES COLLAPSED ACROSS CP GROUPS
% CREATE CC ARRAYS
% THESE ARE THE CROSS CORRELATIONS OF ALL THE BRAIN REGIONS LISTED IN THE VOI FILE
afcccs = cat(3, fcccs{:});
gfcccs = reshape(afcccs(voiorder, voiorder, rlistd(:)), [nvs, nvs, ns, 2, 2, 2]);
% fisher transform
zgfcccs = n.fisherr2z(gfcccs);
zgfcccs(isinf(zgfcccs)) = 0;
% average over first and second run of each half-session
% THESE ARE THE 'PRE' MANIPULATION RESTING STATE SCANS
zgfcccs = squeeze(mean(zgfcccs, 4));
% this leaves 5-dimensions
% THE 5 DIMENSIONS FOR THE zgfcccs ARRAY ARE:
% 1 (ROIs IN THE PAIN NETWORK (i.e., REGIONS [1-16], AS OF February 12, 2018)
% 2 (ROIs IN THE DMN NETWORK (i.e., REGIONS [17-22], AS OF February 12, 2018)
% 3 subjects (in order of groups, 1-31 HC, 32-73 CLBP, 74-90 FM)
% 4 pre/post treatment (1 pre, 2 post)
% 5 neg/pos session (1 neg, 2 pos)
% to unpack:
% - i1 and i2 and i3 are the indices for groups HC and CLBP and FM
% - the next ", 1" is the "pre" (treatment) selection
% - the next ", 1" is the "neg session" selection
%
% to split into within network matrices
% THESE ARE ARRAYS OF CROSS CORRELATIONS AMONG REGIONS IN EACH NETWORK
% THE ARRAYS ARE ORGANIZED AS (REGIONS^REGIONS, ALL SUBJECTS, PRE & POST, POS & NEG)
%
% THESE ARE THE CCs MATRICIES OF BRAIN REGIONS FOR EACH SUBJECT IN EACH ROI SET
bothzgfcccs = zgfcccs(bothstart:bothend, bothstart:bothend, :, :, :);
painzgfcccs = zgfcccs(painstart:painend, painstart:painend, :, :, :);
dmnzgfcccs = zgfcccs(dmnstart:dmnend, dmnstart:dmnend, :, :, :);
% average connectivity strengths
% THESE ARE THE AVERAGE CCs FOR ALL THE SUBJECTS ACROSS THE PAIN REGIONS
painnet = squeeze(sum(sum(painzgfcccs, 1), 2)) ./ (length(painvoi) * (length(painvoi) -1));
% THESE ARE THE CCs FOR ALL THE SUBJECTS ACROSS THE DMN REGIONS
dmnnet = squeeze(sum(sum(dmnzgfcccs, 1), 2)) ./ (length(dmnvoi) * (length(dmnvoi) -1));
%
% CREATE MATRIX OF PAIN CC'S AND BEHAVIORAL DATA
% RESHAPE THE PAINNET CC'S, COLUMNS 1&2=PRE/POST; COLUMNS 3&4=NEG/POS
sub_by_painCCs = [painnet(:,1:2,1),painnet(:,1:2,2)];
psqiData = glistd(:,[1 3 12:24]);
psqiNames = {'ID','GP','TiB_hrs', 'SoL_min','WASO_min','TST_hrs','SleepEfficiency','psqi_Durat','psqi_Distb', ...
'psqi_Latency','psqi_DayDys','psqi_SE','psqi_BadSQual','psqi_Meds','PSQI_total'};
PSQIandPainCCs = [psqiData,sub_by_painCCs]; % WHY DID I MAKE THIS?
%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% THE ANOVA LOOKING AT THE OVERALL MAIN EFFECT OF GROUP
% CCS AVERAGED ACROSS ALL PAIN ROIS; FOR THE PRE-MOOD MANIPULATION RESTING STATE SCANS
% FINISHED May 1, 2018; CODE BLOCK = LINES 145-188
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DECLARE ARRAY TO STORE ANOVA RESULTS
Pain.Pre.n1_3Gp_AvgPain = struct();
% STEP 1 = CREATE VARIABLES OF THE MEAN CORRELATION OF ALL PAIN REGIONS
% FOR EACH GROUP OF THE PRE SCANS ACROSS BOTH VISITS
fcccs_PainPreAvg_HC = mean(painnet(i1,1,:),3); % MEAN OF HC
fcccs_PainPreAvg_CLBP = mean(painnet(i2,1,:),3); % MEAN OF CLBP
fcccs_PainPreAvg_FM = mean(painnet(i3,1,:),3); % MEAN OF FM
% STEP 2 = CREATE AN ARRAY OF THE COMBINED VARIABLES FROM ABOVE
% THE ARRAY NEEDS TO BE PADDED BECAUSE OF UNEVEN GROUP SIZES
% IDENTIFY THE LARGEST GROUP
A = max([numel(i1),numel(i2),numel(i3)]);
A = zeros(A,3); % INITIALIZE ARRAY OF ALL ZEROS FOR LARGEST GROUP
A(A == 0) = NaN; % CONVERT ALL '0' TO 'NaN' (MISSING VALUES)
A(1:numel(fcccs_PainPreAvg_HC),1) = fcccs_PainPreAvg_HC; % HC TO COLUMN 1
A(1:numel(fcccs_PainPreAvg_CLBP),2) = fcccs_PainPreAvg_CLBP; % CLBP TO COLUMN 2
A(1:numel(fcccs_PainPreAvg_FM),3) = fcccs_PainPreAvg_FM; % FM TO COLUMN 3
% STEP 3 = RUNNING THE ANOVA AND MULTIPLE COMPARISONS
% CREATE A TABLE OF OVERALL F-TEST
[Pain.Pre.n1_3Gp_AvgPain.p_PainPre,Pain.Pre.n1_3Gp_AvgPain.modelSummary_PainPre,Pain.Pre.n1_3Gp_AvgPain.stats_PainPre] ...
= anova1(A,gpNames);
% THIS CONVERTS THE ABOVE RESULTS TO TABLE FORMAT
Pain.Pre.n1_3Gp_AvgPain.ftest_tblHdr = Pain.Pre.n1_3Gp_AvgPain.modelSummary_PainPre(1,:); % VARIABLE NAMES FOR THE TABLE
Pain.Pre.n1_3Gp_AvgPain.ftest_tblHdr{1,6} = 'Prob_F'; % FIX THE SYMBOL ISSUE
Pain.Pre.n1_3Gp_AvgPain.overallFtest = array2table(Pain.Pre.n1_3Gp_AvgPain.modelSummary_PainPre(2:4,:), ...
'VariableNames',Pain.Pre.n1_3Gp_AvgPain.ftest_tblHdr);
figure;
% POST-HOC GROUP COMPARISONS
[Pain.Pre.n1_3Gp_AvgPain.multcompare.c,~,~,Pain.Pre.n1_3Gp_AvgPain.multcompare.gnames] = ...
multcompare(Pain.Pre.n1_3Gp_AvgPain.stats_PainPre); % EVALUATE MULTIPLE COMPARISONS
% STEP 4 = PREPARING POST-HOC STATS OUTPUT
% CREATE AN ARRAY OF ANOVA STATISTICAL OUTPUT
Pain.Pre.n1_3Gp_AvgPain.multcompare.multout_PainPre = ...
[Pain.Pre.n1_3Gp_AvgPain.multcompare.gnames(Pain.Pre.n1_3Gp_AvgPain.multcompare.c(:,1)), ...
Pain.Pre.n1_3Gp_AvgPain.multcompare.gnames(Pain.Pre.n1_3Gp_AvgPain.multcompare.c(:,2)), ...
num2cell(Pain.Pre.n1_3Gp_AvgPain.multcompare.c(:,3:6))];
% INITIAL ORDER OF OUTPUT FROM THE MULTICOMPARISON STEP
% COLUMNS 1-6 = {'gp1','gp2','lCI','gpDiff','uCI','pval'}
% CHANGING THE VARIABLE ORDER IN THE OUTPUT ARRAY TO
% COLUMNS 1-6 = {'gp1','gp2', 'pval','gpDiff','lCI','uCI'}) AND THEN
% CREATE A TABLE OF THE MULTICOMPARISON OUTPUT
Pain.Pre.n1_3Gp_AvgPain.multcompare.multout_PainPre = Pain.Pre.n1_3Gp_AvgPain.multcompare.multout_PainPre(:,[1 2 6 4 3 5]);
Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre = ...
array2table(Pain.Pre.n1_3Gp_AvgPain.multcompare.multout_PainPre, ...
'VariableNames',{'gp1','gp2', 'pval','gpDiff','lCI','uCI'});
% COMBINING ALL THE RESULTS INTO A SINGLE ARRAY
Pain.Pre.n1_3Gp_AvgPain.overallResults = ...
[Pain.Pre.n1_3Gp_AvgPain.modelSummary_PainPre];
Pain.Pre.n1_3Gp_AvgPain.overallResults(5,:) = {'-','-','-','-','-','-'};
Pain.Pre.n1_3Gp_AvgPain.overallResults = [Pain.Pre.n1_3Gp_AvgPain.overallResults;...
Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre.Properties.VariableNames];
Pain.Pre.n1_3Gp_AvgPain.overallResults = [Pain.Pre.n1_3Gp_AvgPain.overallResults;...
Pain.Pre.n1_3Gp_AvgPain.multcompare.multout_PainPre];
% file_id0 = fopen([rootpath 'Pain_3Gps_Pre_overallANOVA', whenRun,'.txt'], 'w');
% fprintf(file_id0, Pain.Pre.n1_3Gp_AvgPain.overallResults,'');
% fclose(file_id0) ;
Pain.Pre.n1_3Gp_AvgPain.overallResults = ...
[Pain.Pre.n1_3Gp_AvgPain.overallFtest, ...
Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre];
% Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre.Properties.VariableNames; ...
% Pain.Pre.n1_3Gp_AvgPain.multcompare.multout_PainPre];
% MODIFYING THE multoutTbl_PainPre TO INCLUDE THE OVERALL P-VALUE
Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre.gp1{4,1} = 'overall';
Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre.gp2{4,1} = 'p-value';
Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre.pval{4,1} = Pain.Pre.n1_3Gp_AvgPain.p_PainPre;
Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre = ...
circshift(Pain.Pre.n1_3Gp_AvgPain.multcompare.multoutTbl_PainPre, [1,0]);
%
% WRITE OUT THE TABLE FOR THE FIRST OVERALL TEST
writetable(Pain.Pre.n1_3Gp_AvgPain.overallResults,['Pain_3Gps_overallAnova_' whenRun, '.csv'])
%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ANOVAS TESTING FOR A MAIN EFFECT OF GROUP ON ALL PAIN ROI PAIRS
% USING ALL 3 GROUPS AND ONLY THE PRE MANIPULATION SCANS
% FINISHED May 2, 2018; CODE BLOCK = LINES 196-273
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DECLARE A STRUCT TO HOLD THE RESULTS
Pain.Pre.n2_Gp_RoiPairPain = struct();
% INITIALIZE ARRAY OF ALL ZEROS TO HOLD STAT VALUES
Pain.Pre.n2_Gp_RoiPairPain.anova_fvals = zeros(length(painvoi),length(painvoi));
Pain.Pre.n2_Gp_RoiPairPain.anova_pvals = zeros(length(painvoi),length(painvoi));
% THIS LOOP COMPUTES AN ANOVA FOR ALL ROI-TO-ROI PAIRS
% THIS IS FOR THE PRE-MOOD MANIPULATION SCANS ONLY
for node1 = 1:length(painvoi) % PAIN REGION #1
for node2 = 1:length(painvoi) % PAIN REGION #2
fcccs_PainPreRoi_HC = mean(squeeze(painzgfcccs(node1, node2, i1, 1, :)), 2);
fcccs_PainPreRoi_CLBP = mean(squeeze(painzgfcccs(node1, node2, i2, 1, :)), 2);
fcccs_PainPreRoi_FM = mean(squeeze(painzgfcccs(node1, node2, i3, 1, :)), 2);
fcccs_PainPreRoi_PainGps = mean(squeeze(painzgfcccs(node1, node2, i4, 1, :)), 2); % BOTH CP GROUPS
gpNames = {'HC','CLBP','FM'}; % VARIABLE: GROUP NAMES
roi1str = painnames3(node1,:);
roi2str = painnames3(node2,:);
% STEP 2 = CREATE AN ARRAY OF THE COMBINED VARIABLES FROM ABOVE
% THE ARRAY NEEDS TO BE PADDED BECAUSE OF UNEVEN GROUP SIZES
% IDENTIFY THE LARGEST GROUP
A = max([numel(i1),numel(i2),numel(i3)]);
A = zeros(A,3); % INITIALIZE ARRAY OF ALL ZEROS FOR LARGEST GROUP
A(A == 0) = NaN; % CONVERT ALL '0' TO 'NaN' (MISSING VALUES)
A(1:numel(fcccs_PainPreRoi_HC),1) = fcccs_PainPreRoi_HC; % HC TO COLUMN 1
A(1:numel(fcccs_PainPreRoi_CLBP),2) = fcccs_PainPreRoi_CLBP; % CLBP TO COLUMN 2
A(1:numel(fcccs_PainPreRoi_FM),3) = fcccs_PainPreRoi_FM; % FM TO COLUMN 3
% STEP 3 = RUNNING THE ANOVA AND MULTIPLE COMPARISONS
% CREATE A TABLE OF OVERALL F-TEST
[Pain.Pre.n2_Gp_RoiPairPain.p,Pain.Pre.n2_Gp_RoiPairPain.tbl,Pain.Pre.n2_Gp_RoiPairPain.stats] = anova1(A,gpNames, 'off'); % TABLE OF OVERALL RESULTS
Pain.Pre.n2_Gp_RoiPairPain.ftestHdr = Pain.Pre.n2_Gp_RoiPairPain.tbl(1,:); % VARIABLE NAMES FOR THE TABLE
Pain.Pre.n2_Gp_RoiPairPain.ftestHdr{1,6} = 'Prob_F'; % FIX THE SYMBOL ISSUE
Pain.Pre.n2_Gp_RoiPairPain.ftestTable = array2table(Pain.Pre.n2_Gp_RoiPairPain.tbl(2:4,:),'VariableNames',Pain.Pre.n2_Gp_RoiPairPain.ftestHdr);
Pain.Pre.n2_Gp_RoiPairPain.anova_fvals(node1, node2) = cell2mat(Pain.Pre.n2_Gp_RoiPairPain.tbl(2,5)); % THESE ARE F-VALUES
Pain.Pre.n2_Gp_RoiPairPain.anova_pvals(node1, node2) = Pain.Pre.n2_Gp_RoiPairPain.p;
end
end
% THIS LOOP REMOVES THE UPPER DIAGONAL PVALS AND FVALS MATRICES
for i = 1:length(painvoi)
for j=i+1:length(painvoi)
Pain.Pre.n2_Gp_RoiPairPain.anova_pvals(i,j)=NaN;
Pain.Pre.n2_Gp_RoiPairPain.anova_pvals(i,j)=NaN;
Pain.Pre.n2_Gp_RoiPairPain.anova_fvals(i,j)=NaN;
Pain.Pre.n2_Gp_RoiPairPain.anova_fvals(i,j)=NaN;
end
end
% IDENTIFY THE ROI-TO-ROI PAIRS WITH SIGNIFICANT GROUP DIFFERENCES IN CROSS CORRECTIONS
% SIGNIFICANT PAIRS ARE IDENTIFIED USING THE P-VALUE SPECIFIED BELOW
sigpval = 0.002; % BONFERRONI CORRECTION (pval/regions: 0.05/24=0.002)
[I,J] = find(Pain.Pre.n2_Gp_RoiPairPain.anova_pvals <= sigpval);
[I J] % THE SIGNIFICANT ROI PAIRS IS SENT TO THE SCREEN
Pain.Pre.n2_Gp_sigRoiPairPain = [I,J];
%
% INITIALIZE A VARIABLE TO STORE THE SIGNIFICANT PAIRS
Pain.Pre.n2_Gp_RoiPairPain.n2_Gp_sigRoiPairPain = [];
% Now, add strings to that OUT_TEXT
% and you can use the "sprintf" command for syntax like tabs, line breaks
% ADD A HEADER TO EXPLAIN WHAT INFORMATION IS BEING STORED
Pain.Pre.n2_Gp_RoiPairPain.n2_Gp_sigRoiPairPain = [Pain.Pre.n2_Gp_RoiPairPain.n2_Gp_sigRoiPairPain ...
'There are significant differences among the 3 groups in these ROI-to_ROI CCs:' sprintf('\t') sprintf('\n') ...
'The significance was based on a Bonferroni correction (pval/regions: 0.05/24=0.002):' ...
sprintf('\t') sprintf('\n')];
% THIS LOOP WRITES OUT THE SIGNIFICANT ROI PAIRS IDENTIFIED ABOVE TO THE NEW VARIABLE
for i=1:numel(I)
pairNum = num2str(i);
roi1num = num2str(I(i));
roi1str = painnames3(I(i),:);
roi2num = num2str(J(i));
roi2str = painnames3(J(i),:);
this_pval1 = Pain.Pre.n2_Gp_RoiPairPain.anova_pvals(I(i),J(i));
this_fval1 = Pain.Pre.n2_Gp_RoiPairPain.anova_fvals(I(i),J(i));
Pain.Pre.n2_Gp_RoiPairPain.n2_Gp_sigRoiPairPain = [Pain.Pre.n2_Gp_RoiPairPain.n2_Gp_sigRoiPairPain pairNum, ...
'. ' roi1str 'with ' roi2str ...
sprintf('\t') '(#' roi1num ') <-->' ' (#' roi2num ') ' sprintf('\t') ...
'f-val: ' num2str(this_fval1) sprintf('\t') 'p-val: ' sprintf('%0.04f',this_pval1) sprintf('\n')];
end
% THIS PRINTS THE OUTPUT FROM THE LOOP ABOVE TO THE SCREEN
Pain.Pre.n2_Gp_RoiPairPain.n2_Gp_sigRoiPairPain
% THIS CREATES A TEXT FILE WITH THE SAME OUTPUT AS ABOVE
% whenRun = datestr(now, 'yyyy-mm-dd_HHMM');
file_id1 = fopen([rootpath 'Pain_3Gps_Pre_RoiPairs', whenRun,'.txt'], 'w');
fprintf(file_id1, Pain.Pre.n2_Gp_RoiPairPain.n2_Gp_sigRoiPairPain,'');
fclose(file_id1);
%
%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FOLLOW UP POST HOC TESTING FOR THE SIGNIFICANT ROI PAIRS IDENTIFIED ABOVE
% FOR THE PRE CONDITION ONLY
% FINISHED May 2, 2018; CODE BLOCK = LINES 280-327
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DECLARE A STRUCT TO HOLD THE RESULTS
Pain.Pre.n3_Gp_pHocRoiPairPain = struct();
for i=1:numel(I);
node1 = I(i);
node2 = J(i);
fcccs_PainPreRoi_HC = mean(squeeze(painzgfcccs(node1, node2, i1, 1, :)), 2);
fcccs_PainPreRoi_CLBP = mean(squeeze(painzgfcccs(node1, node2, i2, 1, :)), 2);
fcccs_PainPreRoi_FM = mean(squeeze(painzgfcccs(node1, node2, i3, 1, :)), 2);
gpNames = {'HC','CLBP','FM'}; % VARIABLE: GROUP NAMES
% STEP 2 = CREATE AN ARRAY OF THE COMBINED VARIABLES FROM ABOVE
% THE ARRAY NEEDS TO BE PADDED BECAUSE OF UNEVEN GROUP SIZES
% IDENTIFY THE LARGEST GROUP
A = max([numel(i1),numel(i2),numel(i3)]);
A = zeros(A,3); % INITIALIZE ARRAY OF ALL ZEROS FOR LARGEST GROUP
A(A == 0) = NaN; % CONVERT ALL '0' TO 'NaN' (MISSING VALUES)
A(1:numel(fcccs_PainPreRoi_HC),1) = fcccs_PainPreRoi_HC; % HC TO COLUMN 1
A(1:numel(fcccs_PainPreRoi_CLBP),2) = fcccs_PainPreRoi_CLBP; % CLBP TO COLUMN 2
A(1:numel(fcccs_PainPreRoi_FM),3) = fcccs_PainPreRoi_FM; % FM TO COLUMN 3
% STEP 3 = RUNNING THE ANOVA AND MULTIPLE COMPARISONS
% CREATE A TABLE OF OVERALL F-TEST
[Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).model_p,Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).model_tbl, ...
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).model_stats] = anova1(A,gpNames, 'off'); % TABLE OF OVERALL RESULTS
% THIS CONVERTS THE ABOVE RESULTS TO TABLE FORMAT
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).ftest_tblHdr = Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).model_tbl(1,:); % VARIABLE NAMES FOR THE TABLE
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).ftest_tblHdr{1,6} = 'Prob_F'; % FIX THE SYMBOL ISSUE
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).Ftable = ...
array2table(Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).model_tbl(2:4,:), ...
'VariableNames', Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).ftest_tblHdr);
% THESE TWO LINES PROVIDE SOMEWHAT REDUNDANT INFORMATION
Pain.Pre.n3_Gp_pHocRoiPairPain.ph_Fvals2(node1, node2) = cell2mat(Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).model_tbl(2,5)); % THESE ARE F-VALUES
Pain.Pre.n3_Gp_pHocRoiPairPain.ph_Pvals2(node1, node2) = cell2mat(Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).model_tbl(2,6)); % THESE ARE P-VALUES
% THE NEXT 3 LINES PERFORM THE POST-HOC GROUP COMPARISONS USING: multcompare - ON THE 3RD LINE
% OUTPUT: c=MATRIX OF RESULTS, h=FIGURE HANDLE, m=GROUP MEAN and STD ERROR
[Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).c,Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).m, ...
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).h,Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).gpNames] ...
= multcompare(Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).model_stats);%, 'CType','bonferroni'); % POTENTIAL CORRECTION
% THE NEXT 3 SEGMENTS CLEAN UP THE OUTPUT AND IMPROVES READIBILITY
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).gpPostHoc = ...
[Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).gpNames(Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).c(:,1)), ...
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).gpNames(Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).c(:,2)), ...
num2cell(Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).c(:,3:6))];
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).gpPostHoc = ...
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).gpPostHoc(:,[1 2 6 4 3 5]);
Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).gpPostHocTable = ...
array2table(Pain.Pre.n3_Gp_pHocRoiPairPain.(strcat('posthoc', num2str(i))).gpPostHoc, ...
'VariableNames',{'gp1','gp2', 'pval','gpDiff','lCI','uCI'});
end
%
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% THE FIRST ANOVA (PAIN-PRE) FOUND NO SIGNIFICANT DIFFERENCES BETWEEN THE PAIN GROUPS
% THE PAIN GROUPS WERE COLLAPSED FOR THE FOLLOWING ANALYSES (PAIN, PRE-MOOD MANIPULATION)
% T-TEST COMPARING GROUPS ON THE REGION-TO-REGION CROSS-CORRELATIONS
% FINISHED May 2, 2018; CODE BLOCK = LINES 335-390
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% DECLARE STRUCT TO HOLD T-TEST RESULTS
Pain.Pre.n4_Gp_ttestRoiPairPain = struct();
for node1 = 1:numel(painvoi) % PAIN REGION #1
for node2 = 1:numel(painvoi) % PAIN REGION #2
fcccs_PainPreRoi_HC = mean(squeeze(painzgfcccs(node1, node2, i1, 1, :)), 2); % HC GROUP
fcccs_PainPreRoi_PainGps = mean(squeeze(painzgfcccs(node1, node2, i4, 1, :)), 2); % BOTH CP GROUPS
gpNames2 = {'HC','Pain'}; % VARIABLE: GROUP NAMES COLLAPSED ACROSS CP GROUPS
[Pain.Pre.n4_Gp_ttestRoiPairPain.h,Pain.Pre.n4_Gp_ttestRoiPairPain.p,Pain.Pre.n4_Gp_ttestRoiPairPain.CI,Pain.Pre.n4_Gp_ttestRoiPairPain.stats] ...
= ttest2(fcccs_PainPreRoi_HC,fcccs_PainPreRoi_PainGps); % 2 SAMPLE T-TEST
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_tval(node1, node2) = Pain.Pre.n4_Gp_ttestRoiPairPain.stats.tstat; % tstat
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_pval(node1, node2) = Pain.Pre.n4_Gp_ttestRoiPairPain.p; % pvalue
end
end
% REMOVE THE UPPER DIAGONAL FROM THE MATRICES BELOW
for i = 1:24
for j=i+1:24
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_tval(i,j)=NaN;
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_pval(i,j)=NaN;
end
end
% THESE IDENTIFY GROUP DIFFERENCES IN ROI-TO-ROI FUNCTIONAL CONNECTIVITY
% FDR CORRECTION
pid = FDR(Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_pval,.05); % (THIS RESULTS IN A PVAL OF 0.018 FOR THIS SET OF VALUES)
[I,J] = find(Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_pval <= sigpval); % USING BONFERRONI CORRECTION
[I J]
Pain.Pre.n4_Gp_sigRoiPairPain = [I,J];
%% FANCY CODE TO PRINT-OUT RESULTS
% FIRST, CREATE AN EMPTY ARRAY OF CHARACTER STRINGS
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_results = [];
% NOW, ADD STRINGS TO THAT ARRAY
% AND YOU CAN USE THE "SPRINTF" COMMAND FOR SYNTAX LIKE TABS, LINE BREAKS
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_results = [Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_results ...
'Significant t-test of pain ROIs, pre mood change, in the CCs of these ROI-pairs:' sprintf('\t') sprintf('\n') ...
'The significance was based on a Bonferroni correction (pval/regions: 0.05/24=0.002):' ...
sprintf('\t') sprintf('\n')];
% THIS LOOP WRITES OUT THE SIGNIFICANT ROI PAIRS IDENTIFIED BY THE T-TEST ABOVE
for i=1:numel(I)
pairNum = num2str(i);
roi1num = num2str(I(i));
roi1str = painnames3(I(i),:);
roi2num = num2str(J(i));
roi2str = painnames3(J(i),:);
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_FDRtval = Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_tval(I(i),J(i));
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_FDRpval = Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_pval(I(i),J(i));
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_results = [Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_results pairNum, '. ' roi1str, 'with ' roi2str ...
sprintf('\t') '(#' roi1num ') <-->' ' (#' roi2num ') ' sprintf('\t') ...
't-val: ', num2str(Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_FDRtval), sprintf('\t'), ...
'p-val: ' sprintf('%0.04f',Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_FDRpval) sprintf('\n')];
end
% SEND THE OUTPUT TO THE SCREEN
Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_results
% NEGATIVE T-VALUES = HEALTHY CONTROL LESS THAN THE COMBINED PAIN GROUPS
figure;
imagesc(Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_tval);colorbar;colormap(parula);
% WRITE OUT THE SIGNIFICANT ROI-TO-ROI CORRELATION BETWEEN GROUPS
file_id2 = fopen([rootpath 'Sig_Pain_Pre_ROIttest', whenRun,'.txt'], 'w');
fprintf(file_id2, Pain.Pre.n4_Gp_ttestRoiPairPain.ttest_results,'');
fclose(file_id2);
%
%%
%{
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NOW THAT WE HAVE IDENTIFIED ROI-ROI CORRELATIONS THAT DIFFER BETWEEN GROUPS VIA T-TEST
% WE WILL USE REGRESSION ANALYSES TO SEE WHICH, IF ANY, BEHAVIORAL VARIABLES SIGNIFICANLY
% CONTRIBUTE TO GROUP DIFFERENCES IN THE FUNCTIONAL CONNECTIVITY BETWEEN THE ROI PAIRS
% FINISHED May 3, 2018; CODE BLOCK = LINES 400-446
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CREATE A HEADER FOR THE PSQI DATA MATRIX AND 'Y'
% 'Y' WILL BE THE ROI-TO-ROI CC BEING PREDICTED IN THE ANALYSES BELOW
% THE FOLLOWING ARE MULTIPLE LINEAR REGRESSION USING fitlm (WITH A TABLE)
% CREATE A HEADER FOR THE PSQI DATA MATRIX AND 'Y'
% 'Y' WILL BE THE ROI-TO-ROI CC BEING PREDICTED IN THE ANALYSES BELOW
% THE FOLLOWING ARE MULTIPLE LINEAR REGRESSION USING fitlm (WITH A TABLE)
psqiPlusRoiNames = [psqiNames, 'Y'];
% DECALRE A STRUCT TO HOLD ALL THE RESULTS FROM THE REGRESSIONS BELOW
Pain.Pre.n4_Gp_regrssRoiPairPain = struct();
for i=1:numel(I);
node1 = I(i);
node2 = J(i);
roi1str = painnames2(I(i),:);
roi2str = painnames2(J(i),:);
Ypair = strcat(roi1str,'_with_',roi2str);
Y = mean(squeeze(painzgfcccs(node1, node2, :, 1, :)), 2);
psqiPlusROI = [psqiData, Y];
tblPsqi_ROI = array2table(psqiPlusROI, 'VariableNames',psqiPlusRoiNames);
tblPsqi_ROI.GP = nominal(tblPsqi_ROI.GP);
tblPsqi_ROIreduced = tblPsqi_ROI(:,{'TiB_hrs','SoL_min','WASO_min','PSQI_total','GP','Y'});
% LINEAR REGRESSION (fitlm) WITH SPECIFIC INTERACTION TERMS
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('LMpair_', num2str(i))) = fitlm(tblPsqi_ROIreduced, ...
'Y~TiB_hrs+SoL_min+WASO_min+PSQI_total+TiB_hrs*GP+SoL_min*GP+WASO_min*GP+PSQI_total*GP');
% STEPWISE LINEAR REGRESSION (stepwiselm) WITH SPECIFIC INTERACTION TERMS
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('SLMpair_', num2str(i))) = stepwiselm(tblPsqi_ROIreduced, ...
'Y~TiB_hrs+SoL_min+WASO_min+PSQI_total+TiB_hrs*GP+SoL_min*GP+WASO_min*GP+PSQI_total*GP');
% INTERCEPT ONLY MODEL (stepwiselm)
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('SLMintercept_', num2str(i))) = stepwiselm(tblPsqi_ROIreduced, ...
'constant', 'ResponseVar', 'Y');
% INTERACTION MODEL (stepwiselm)
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('SLMinteraction_', num2str(i))) = stepwiselm(tblPsqi_ROIreduced, ...
'interactions', 'ResponseVar', 'Y');
% QUADRATIC MODEL (stepwiselm)
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('SLMquadratic_', num2str(i))) = stepwiselm(tblPsqi_ROIreduced, ...
'quadratic','ResponseVar','Y','Upper','quadratic');
end
% EVALUATE THE RSQUARED VALUES OF THE REGRESSION MODELS (T-TEST ROI PAIRS)
for i=1:numel(I)
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('RSq_', num2str(i))) = ...
[Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('LMpair_', num2str(i))).Rsquared.Adjusted ...
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('SLMpair_', num2str(i))).Rsquared.Adjusted ...
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('SLMintercept_', num2str(i))).Rsquared.Adjusted ...
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('SLMinteraction_', num2str(i))).Rsquared.Adjusted ...
Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('SLMquadratic_', num2str(i))).Rsquared.Adjusted];
end
% OUTPUT THE OVERALL F AND P-VALUES FOR EACH MODEL
for i=1:numel(I);
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModel = anova(Pain.Pre.n4_Gp_regrssRoiPairPain.(strcat('LMpair_', num2str(i))), 'summary');
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary(i, :) = Pain.Pre.n4_Gp_regrssRoiPairPain.lmModel(2,4:5);
end
% IDENTIFY SIGNIGCANT MODELS BASED ON THE PVALUES STORED IN lmModelSummary
% THE PVALUE CRITERIA IS SPECIFIED BELOW
% SIG = '1'; NON-SIG = '0'
% THE MODEL NUMBER IS ADDED
% THE NUMBERS AND NAMES OF EACH ROI PAIR ARE ADDED
% THE NEW COLUMN ORDER IS 'model','sig','pvalue','F','node1','node2','roi1','roi2'
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary.sig = [Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary.pValue < 0.05];
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary.node1 = I;
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary.node2 = J;
%
for i=1:numel(I);
node1 = I(i);
node2 = J(i);
roi1num = num2str(I(i));
roi1str = painnames2(I(i),:);
roi2num = num2str(J(i));
roi2str = painnames2(J(i),:);
DUMMY_ROI1{i} = roi1str;
DUMMY_ROI2{i} = roi2str;
end
%
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary.roi1 = DUMMY_ROI1';
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary.roi2 = DUMMY_ROI2';
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary.model = (1:numel(I))';
Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary = Pain.Pre.n4_Gp_regrssRoiPairPain.lmModelSummary(:, [8 3 2 1 4 5 6 7]);
%{
LM_PainPre.modelSummary.roi1 = DUMMY_ROI1';
LM_PainPre.modelSummary.roi2 = DUMMY_ROI2';
LM_PainPre.modelSummary.model = (1:numel(I))';
LM_PainPre.modelSummary = LM_PainPre.modelSummary(:, [8 3 2 1 4 5 6 7]);
%
%
%{
%
% STEPWISE LINEAR REGRESSION
% tablePsqiPlusROIstep = tablePsqiPlusROI(:,3:7); % SUBTABLE FOR STEPWISE REGRESSION
% Pain.Pre.LM.(strcat('pair_'+1, num2str(i))) = stepwisefit(tablePsqiPlusROIstep,Y,'penter',0.05,'premove',0.10);
% TO INCLUDE COVARIATES, OR INTERACTION TERMS, CONSIDER MODIFYING THE CODE BELOW
% zmdl2 = fitlm(tablePsqiPlusROI, 'Y~TiB_hrs+TiB_hrs*GP')
% FOR DOING SCATTERPLOTS OF THE DATA CONSIDER USING THE CODE BELOW
% gscatter(tablePsqiPlusROI.Y,tablePsqiPlusROI.SleepEfficiency,tablePsqiPlusROI.GP,'bgr','x.o')
%
%
%}
%}
%%%%%%%%%%%%%%%%%%%%%% END SCRIPT %%%%%%%%%%%%%%%%%%%%%%
% [H_PainPre,P_PainPre,CI_PainPre,STATS_PainPre] = ttest2(prePainHC,prePainGps); % 2 SAMPLE T-TEST
% [H_PainPre,P_PainPre,CI_PainPre,STATS_PainPre] = ttest2(prePainHC,prePainGps); % 2 SAMPLE T-TEST
% ttest_tval_PainPre(node1, node2) = STATS_PainPre.tstat; % tstat
% ttest_pval_PainPre(node1, node2) = P_PainPre; % pvalue
% [c,~,~,gnames] = multcompare(stats); % EVALUATE MULTIPLE COMPARISONS
% THESE NEXT 4 LINES MIGHT NOT BE RELATED TO THE T-TEST
% multcomparePreOutput = [gnames(c(:,1)), gnames(c(:,2)), num2cell(c(:,3:6))];
% multcomparePreOutput = multcomparePreOutput(:,[1 2 6 4 3 5]);
% tableAnovaPre = array2table(multcomparePreOutput, 'VariableNames',{'gp1','gp2', 'pval','gpDiff','lCI','uCI'});
% multiTest.OUT_TEXT2 = [multiTest.OUT_TEXT2 roi1str 'with ' roi2str 'new line' sprintf('\n')];
%
%{
% pid = FDR(pain_anovaresults_pvals,.05);
% [x,y] = find(pain_anovaresults_pvals <= pid);
% [x y];
%
%}
%{
%%%%%%%%%%%%%%%%%%%%%% OTHER ANALYSES %%%%%%%%%%%%%%%%%%%%%%
% Method A: Simple linear regression
% NOTE: VERY Simple
% Instead, we are going to use multiple regression
% (but keeping this code in case need for later)
% for each ROI-ROI correlation (Y) from above,
% Test if behavioral variable (X, i.e. a sleep variable) predicts Y
% for i=1:numel(I)
% node1=I(i);
% node2=J(i);
% for behavior_index=3:5 %14 %2:5%numel(psqiNames) % skip first column, which is ID
% BEHAVIOR = psqiData(:,behavior_index);
% BEHAVIOR_label=psqiNames{behavior_index};
% X = [ones(size(BEHAVIOR)) BEHAVIOR];
% Y = mean(squeeze(painzgfcccs(node1, node2, :, 1, :)), 2);
% [B,BINT,R,RINT,STATS] = regress(Y,X);
% % B(1) is beta for constant term; B(2) is beta for behavioral
% % STATS lists (1) R2, (2) F stat, (3) p-value, (4) error variance
% % can estimate t-value as square-root of F-stat times sign of B(2) (+ or -)
%
% % scatterplot
% % if P<0.05 (uncorrected)
% % scatterplot of relationship
% if STATS(3) < 0.05
% figure
% plot(X(:,2),Y,'k+');
% hold on
% l = lsline;
% set(l,'LineWidth',2)
% xlabel(psqiNames{behavior_index})
% ylabel(['RS-FC of ROI' num2str(node1) '-ROI' num2str(node2)])
% R2=STATS(1);
% xposition = max(X(:,2)) - 0.1*range(X(:,2));
% yposition = max(Y) - 0.1*range(Y);
% text(xposition,yposition,['R^2 = ' sprintf('%0.3f',R2)])
% end
%
% Regress_P_out(i,behavior_index) = STATS(3);
% Regress_T_out(i,behavior_index) = sqrt(STATS(2))*sign(B(2));
% Regress_B_out(i,behavior_index) = B(2);
% % Note: in line 287, we are looping through variables 3-5
% % in line 317, we are assigning to columns 3-5
% % therefore, columns 1 and 2 will be empty (all zeros)
% %
% % You can change code so that line 316 assigns to (behavior_index-2), but this could cause problems later
% % Recommend keep as is
% %
% % So each row of Regress_B_out is a different ROI-to-ROI pairs
% % and each column corresponds to a variable in psqiData (if tested)
% % For example: we did not test variable #1 (subject ID), so this column is all zeros
%
% end
% end
%
%
%}
%}