-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathJC_preprocessing.m
305 lines (276 loc) · 12.9 KB
/
JC_preprocessing.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
% check SPM version
%%
% CREATED BY: JOCHEN WEBER
% CREATED ON: 11/22/16
%
% MODIFIED BY: JASON CRAGGS
% MODIFIED ON: 2017_09_20
% MODIFIED ON: 2017_12_06
% MODIFIED ON: 2018_01_09 (ADDED INFO ABOUT SLICE TIMING)
% LATEST MODIFICATION: 2019_04_17 (making sure it still works)
%
% USAGE: PREPROCESS JASON'S R01 DATA
% MODIFIED TO: JASON IS PREPROCESSING ADDITIONAL SUBJECTS
% WHICH REQUIRES THAT THEY BE IN A DIFFERENT FOLDER
%
% 2017_12_06
% TESTING THE ORDER THE SCRIPTS SHOULD BE RUN
% THIS IS THE FIRST ONE
%%
if ~strcmpi(spm('ver'), 'spm12')
error('spm:version:wrongSPMVersion', 'This script requires SPM12.');
end
% initialize SPM defaults and job manager
% spm12path = '/cluster/folder/craggs/software/spm12';
spm12path = '/Users/jcraggs/Applications/spm12';
spm('defaults','FMRI');
spm_jobman('initcfg');
clear matlabbatch;
% configure root path and subject pattern, as well as file patterns
%rootpath = '/cluster/folder/craggs/study/preprocessed/';
%rootpath = '/Volumes/Data/Imaging/R01/preprocessed/';
%rootpath = '/Volumes/Data/Imaging/R01/preprocessed/_Jason/';
%rootpath = '/Volumes/Data/Imaging/R01/preprocessed/_Jason_0/';
rootpath = '/Volumes/Data/Imaging/R01/preprocessed/_Jason_step1/';
subpattern = 'Sub*_v*';
anatpattern = 'T1_*.nii';
funcpattern = 'RSrun*.nii';
numruns = 4;
% set variables, number of volumes and functional slices, TR
nvols = 125;
nslices = 42;
TR = 2.8;
% SLICE ACQUISITION ORDER IS INTERLEAVED BUT THE
% FIRST SLICE ACQUIRED IS SLICE #2; THEREFORE THE
% CORRECT SPM SPECIFICATION IS [2:2:42 1:2:42]
% slice aquisition order (interleaved bottom) and reference slice
if mod(nslices, 2) == 1
sliceorder = [1:2:nslices, 2:2:nslices];
else
sliceorder = [2:2:nslices, 1:2:nslices];
end
refslice = sliceorder(1);
% reslice voxel size and bounding box
wvox = 2;
wbbox = [-78, -112, -70; 78, 76, 85];
% smoothing kernel (EPI)
epismk = 6;
% compute TA
TA = TR - (TR / nslices);
% find subjects in root folder
dirinfo = dir([rootpath subpattern]);
subjlist = {dirinfo.name};
% pick subject according to job number
for sc = 1:numel(subjlist)
% set primary path
primary_path = [rootpath subjlist{sc} filesep];
cd(primary_path);
% gzip -d everything
gzipfiles = dir('*.gz');
if ~isempty(gzipfiles)
system('gzip -d *.gz');
end
% locate files
anatfile = dir([primary_path anatpattern]);
funcfiles = dir([primary_path funcpattern]);
if numel(anatfile) ~= 1 || numel(funcfiles) ~= numruns
warning('spm:prepro:invalidNumberOfFiles', ...
'Number of files incorrect for %s.', subjlist{sc});
continue;
end
if exist(['swa' funcfiles(end).name], 'file') == 2
fprintf('%s already preprocessed.\n', subjlist{sc});
continue;
end
% check number of slices
vol = spm_vol(funcfiles(1).name);
if vol(1).dim(3) ~= nslices
warning('spm:prepro:invalidNumberOfSlices', ...
'Number of slices mismatch for %s.', subjlist{sc});
continue;
end
% change filetype of functional data to float32 (reduce precision loss)
for fc = 1:numruns
vol = spm_vol(funcfiles(fc).name);
if vol(1).dt(1) == 16
continue;
end
fprintf('Converting %s in %s to float32...\n', funcfiles(fc).name, subjlist{sc});
voldata = spm_read_vols(vol);
[vol.dt] = deal([16, 0]);
for vc = 1:numel(vol)
vol(vc).pinfo(3) = vol(1).pinfo(3) + (vc - 1) * prod([4, vol(1).dim]);
end
delete(funcfiles(fc).name);
for vc = 1:numel(vol)
spm_write_vol(vol(vc), voldata(:, :, :, vc));
end
end
% smooth the structural
anat = [primary_path anatfile.name];
matlabbatch{1}.spm.spatial.smooth.data = {anat};
matlabbatch{1}.spm.spatial.smooth.fwhm = [12 12 12];
matlabbatch{1}.spm.spatial.smooth.dtype = 0;
matlabbatch{1}.spm.spatial.smooth.im = 0;
matlabbatch{1}.spm.spatial.smooth.prefix = 's';
fprintf('Smoothing %s in %s...\n', anatfile.name, subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
% coregister smoothed struct to old T1 template
sanat = [primary_path 's' anatfile.name];
matlabbatch{1}.spm.spatial.coreg.estimate.ref = {[spm12path '/toolbox/OldNorm/T1.nii,1']};
matlabbatch{1}.spm.spatial.coreg.estimate.source = {sanat};
matlabbatch{1}.spm.spatial.coreg.estimate.other = {anat};
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi';
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4, 2];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 ...
0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7, 7];
fprintf('Coregistering (roughly) s%s in %s to T1 template...\n', anatfile.name, subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
%delete(sanat);
% segment the structural
DefField = [primary_path 'y_' anatfile.name];
manat = [primary_path 'm' anatfile.name];
tpms = repmat({[spm12path filesep 'tpm' filesep 'TPM.nii,']}, 1, 6);
for tc = 1:6
tpms{tc} = {[tpms{tc} char(48+tc)]};
end
matlabbatch{1}.spm.spatial.preproc.channel.vols = {anat};
matlabbatch{1}.spm.spatial.preproc.channel.biasreg = 0.001;
matlabbatch{1}.spm.spatial.preproc.channel.biasfwhm = 60;
matlabbatch{1}.spm.spatial.preproc.channel.write = [0, 1];
matlabbatch{1}.spm.spatial.preproc.tissue = struct('tpm', tpms, ...
'ngaus', {1, 1, 2, 3, 4, 2}, ...
'native', {[1, 1], [1, 1], [1, 1], [0, 0], [0, 0], [0, 0]}, ...
'warped', {[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]});
matlabbatch{1}.spm.spatial.preproc.warp.mrf = 1;
matlabbatch{1}.spm.spatial.preproc.warp.cleanup = 1;
matlabbatch{1}.spm.spatial.preproc.warp.reg = [0, 0.001, 0.5, 0.05, 0.2];
matlabbatch{1}.spm.spatial.preproc.warp.affreg = 'mni';
matlabbatch{1}.spm.spatial.preproc.warp.fwhm = 0;
matlabbatch{1}.spm.spatial.preproc.warp.samp = 3;
matlabbatch{1}.spm.spatial.preproc.warp.write = [1, 1];
if exist(DefField, 'file') ~= 2 || exist(manat, 'file') ~= 2
spm_jobman('run', matlabbatch);
end
clear matlabbatch;
% normalize the segmented structural to T1 template
matlabbatch{1}.spm.spatial.normalise.write.subj.def = {DefField};
matlabbatch{1}.spm.spatial.normalise.write.subj.resample = {manat};
matlabbatch{1}.spm.spatial.normalise.write.woptions.bb = ...
[-78, -112, -70; 78, 76, 85];
matlabbatch{1}.spm.spatial.normalise.write.woptions.vox = [1 1 1];
matlabbatch{1}.spm.spatial.normalise.write.woptions.interp = 4;
matlabbatch{1}.spm.spatial.normalise.write.woptions.prefix = 'w';
fprintf('Warping anatomical %s in %s to MNI space...\n', anatfile.name, subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
% skull strip the segmented structural
c1 = [primary_path 'c1' anatfile.name];
c2 = [primary_path 'c2' anatfile.name];
c3 = [primary_path 'c3' anatfile.name];
sx = ['xm' anatfile.name];
matlabbatch{1}.spm.util.imcalc.input = {manat; c1; c2; c3};
matlabbatch{1}.spm.util.imcalc.output = sx;
matlabbatch{1}.spm.util.imcalc.outdir = {''};
matlabbatch{1}.spm.util.imcalc.expression = 'i1.*((i2+i3+i4)>=.5)';
matlabbatch{1}.spm.util.imcalc.var = struct('name', {}, 'value', {});
matlabbatch{1}.spm.util.imcalc.options.dmtx = 0;
matlabbatch{1}.spm.util.imcalc.options.mask = 0;
matlabbatch{1}.spm.util.imcalc.options.interp = 1;
matlabbatch{1}.spm.util.imcalc.options.dtype = 4;
fprintf('Skull stripping m%s in %s...\n', anatfile.name, subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
% generate func file names
funcfiles = {funcfiles.name};
meanfuncfile = sprintf('%smeana%s,1', primary_path, funcfiles{1});
smeanfuncfile = sprintf('%ssmeana%s,1', primary_path, funcfiles{1});
afuncfiles = funcfiles;
wafuncfiles = funcfiles;
for fc = 1:numruns
funcfiles{fc} = repmat(funcfiles(fc), nvols, 1);
afuncfiles{fc} = funcfiles{fc};
wafuncfiles{fc} = funcfiles{fc};
for vc = 1:nvols
funcfiles{fc}{vc} = sprintf('%s%s,%d', primary_path, funcfiles{fc}{vc}, vc);
afuncfiles{fc}{vc} = sprintf('%sa%s,%d', primary_path, afuncfiles{fc}{vc}, vc);
wafuncfiles{fc}{vc} = sprintf('%swa%s,%d', primary_path, wafuncfiles{fc}{vc}, vc);
end
end
% slice-timing of functional data
matlabbatch{1}.spm.temporal.st.scans = funcfiles;
matlabbatch{1}.spm.temporal.st.nslices = nslices;
matlabbatch{1}.spm.temporal.st.tr = TR;
matlabbatch{1}.spm.temporal.st.ta = TA;
matlabbatch{1}.spm.temporal.st.so = sliceorder;
matlabbatch{1}.spm.temporal.st.refslice = refslice;
matlabbatch{1}.spm.temporal.st.prefix = 'a';
fprintf('Slice-time correcting data in %s...\n', subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
% motion correction/realignment (+ mean image)
matlabbatch{1}.spm.spatial.realign.estwrite.data = afuncfiles;
matlabbatch{1}.spm.spatial.realign.estwrite.eoptions = struct( ...
'quality', 0.9, 'sep', 4, 'fwhm', 5, 'rtm', 1, 'interp', 2, 'wrap', [0, 0, 0], 'weight', '');
matlabbatch{1}.spm.spatial.realign.estwrite.roptions = struct( ...
'which', [0, 1], 'interp', 4, 'wrap', [0, 0, 0,], 'mask', 1, 'prefix', 'r');
fprintf('Realignment of data in %s...\n', subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
% smooth mean functional (for first step of coreg)
matlabbatch{1}.spm.spatial.smooth.data = {meanfuncfile};
matlabbatch{1}.spm.spatial.smooth.fwhm = [12, 12, 12];
matlabbatch{1}.spm.spatial.smooth.dtype = 0;
matlabbatch{1}.spm.spatial.smooth.im = 0;
matlabbatch{1}.spm.spatial.smooth.prefix = 's';
fprintf('Smoothing %s in %s (for coreg)...\n', meanfuncfile, subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
% coregister funcs to EPI template
matlabbatch{1}.spm.spatial.coreg.estimate.ref = ...
{[spm12path filesep 'toolbox' filesep 'OldNorm' filesep 'EPI.nii,1']};
matlabbatch{1}.spm.spatial.coreg.estimate.source = {smeanfuncfile};
matlabbatch{1}.spm.spatial.coreg.estimate.other = [{meanfuncfile}; cat(1, afuncfiles{:})];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi';
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4, 2];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 ...
0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7, 7];
fprintf('Coregistering smoothed mean-func in %s to EPI template...\n', subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
% coregister funcs to T1
matlabbatch{1}.spm.spatial.coreg.estimate.ref = {[primary_path sx]};
matlabbatch{1}.spm.spatial.coreg.estimate.source = {meanfuncfile};
matlabbatch{1}.spm.spatial.coreg.estimate.other = cat(1, afuncfiles{:});
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi';
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4, 2];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 ...
0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7, 7];
fprintf('Coregistering mean-func in %s to skull-stripped anatomical...\n', subjlist{sc});
spm_jobman('run', matlabbatch);
clear matlabbatch;
% MNI-normalize EPI data
matlabbatch{1}.spm.spatial.normalise.write.subj.def = {DefField};
matlabbatch{1}.spm.spatial.normalise.write.subj.resample = cat(1, afuncfiles{:});
matlabbatch{1}.spm.spatial.normalise.write.woptions.bb = wbbox;
matlabbatch{1}.spm.spatial.normalise.write.woptions.vox = repmat(wvox, 1, 3);
matlabbatch{1}.spm.spatial.normalise.write.woptions.interp = 4;
matlabbatch{1}.spm.spatial.normalise.write.woptions.prefix = 'w';
fprintf('MNI-warping EPI data in %s using %gmm voxel size...\n', subjlist{sc}, wvox);
spm_jobman('run', matlabbatch);
clear matlabbatch
% smooth EPI data
matlabbatch{1}.spm.spatial.smooth.data = cat(1, wafuncfiles{:});
matlabbatch{1}.spm.spatial.smooth.fwhm = repmat(epismk, 1, 3);
matlabbatch{1}.spm.spatial.smooth.dtype = 0;
matlabbatch{1}.spm.spatial.smooth.im = 0;
matlabbatch{1}.spm.spatial.smooth.prefix = 's';
fprintf('Smoothing warped EPI data in %s with %gmm kernel...\n', subjlist{sc}, epismk);
spm_jobman('run', matlabbatch);
clear matlabbatch;
end