Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PGAI-2023-LlamaRec: Two-Stage Recommendation using Large Language Models for Ranking #373

Open
BrambleXu opened this issue Aug 5, 2024 · 0 comments
Assignees
Labels
LLM(M) Large language models Recommendation(T) Recommendation Task

Comments

@BrambleXu
Copy link
Owner

Summary:

LlamaRec是一个基于大语言模型(LLM)的两阶段推荐框架,旨在提高推荐系统的效率和准确性。该框架包含两个主要阶段:检索阶段和排名阶段。以下是LlamaRec的主要内容和贡献:

  1. 关键特点
    两阶段框架:LlamaRec将推荐过程分为检索和排名两个步骤,首先使用小规模的序列推荐器高效地生成候选项,然后利用LLM进行精细化的排名。
    高效检索:采用基于线性递归的LRURec模型作为检索器,能够快速处理用户历史记录并生成潜在候选项。
    LLM排名:通过设计特定的文本提示,将用户历史记录和候选项输入到LLM中,进行更深入的偏好理解和排名。

Resource:

Paper information:

  • Author:
  • Dataset:
  • keywords:

Notes:

Model Graph:

Result:

Thoughts:

和我想要找的领域不一样。 sub领域没有sequential信息,无法起到很好的item过滤效果。。不过这个用条件检索应该也能实现。

Next Reading:

@BrambleXu BrambleXu added Recommendation(T) Recommendation Task LLM(M) Large language models labels Aug 5, 2024
@BrambleXu BrambleXu self-assigned this Aug 5, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
LLM(M) Large language models Recommendation(T) Recommendation Task
Projects
None yet
Development

No branches or pull requests

1 participant