-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstein_score.py
282 lines (208 loc) · 13.5 KB
/
stein_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from pyquil.quil import Program
import numpy as np
from pyquil.api import get_qc
import numpy.linalg as LA
from train_generation import DataSampler
from classical_kernel import GaussianKernelArray, GaussianKernel
from file_operations_in import KernelDictFromFile, DataImport
from auxiliary_functions import ShiftString, ToString, EmpiricalDist
import matplotlib.pyplot as plt
'''Functions for the Identity Method to compute the Stein Score'''
def ComputeInverseTerm(kernel_array, N_samples, chi):
'''This function computes the inverse matrix required by the Stein Score Approximator'''
return LA.inv(kernel_array - chi*np.identity(N_samples))
def ComputeKernelShift(samples, stein_kernel, stein_sigma):
'''
This kernel will not be the same as the one used in the MMD, it will only be computed
between all samples from distribution P, with every sample from the SAME distribution P
'''
N_samples = len(samples)
N_qubits = len(samples[0])
shifted_kernel_for_score = np.zeros((N_samples, N_samples, N_qubits))
for sample_1_index in range(0, N_samples):
for sample_2_index in range(0, N_samples):
for qubit in range(0, N_qubits):
sample_1 = ToString(samples[sample_1_index])
sample_2 = ToString(samples[sample_2_index])
shiftedstring2 = ShiftString(sample_2, qubit)
shifted_kernel_for_score[sample_1_index][sample_2_index][qubit] = \
GaussianKernel(sample_1, sample_2, stein_sigma) - GaussianKernel(sample_1, shiftedstring2, stein_sigma)
shifted_kernel_array = shifted_kernel_for_score.sum(axis = 1)/N_samples
return shifted_kernel_array
def IdentitySteinScore(samples, kernel_choice, chi, stein_sigma):
'''This function computes the Stein Score matrix for all samples, based
on the method of inverting Stein's identity'''
N_samples = len(samples)
#compute kernel matrix between all samples
if kernel_choice == 'Gaussian':
kernel_array = GaussianKernelArray(samples, samples, stein_sigma)
else: raise ValueError('\'kernel_choice\' must be \'Gaussian\'')
#Compute inverse term in Stein score approximation
inverse = ComputeInverseTerm(kernel_array, N_samples, chi)
#Compute shifted kernel term in Stein Score Approximation
shifted_kernel_matrix = ComputeKernelShift(samples, kernel_choice, stein_sigma)
#Compute Approximate kernel
stein_score_array_identity = N_samples*np.dot(inverse, np.transpose(shifted_kernel_matrix))
return stein_score_array_identity
'''Functions for the Probability Mass method to compute the Stein Score'''
def MassSteinScoreSingleSample(sample, data_dict):
'''This computes the exact Stein Score function in the discrete case for a single
sample which is a 1D numpy array, based on probability *mass* function data_dict'''
if type(sample) is np.ndarray and sample.ndim != 1:
raise TypeError('If \'sample\' is a numpy array, it must be 1 - Dimensional')
N_qubits = len(sample)
sample_string = ToString(sample)
stein_score_sample_mass = np.zeros((N_qubits))
for bit_index in range(0, N_qubits):
shifted_string = ToString(ShiftString(sample_string, bit_index))
stein_score_sample_mass[bit_index] = 1 - data_dict[shifted_string]/data_dict[sample_string]
return stein_score_sample_mass
def MassSteinScore(samples, data_dict):
'''This computes the Stein Matrix for all samples, based on probability *mass* function '''
N_samples = len(samples)
N_qubits = len(samples[0])
stein_score_mass_array = np.zeros((N_samples, N_qubits))
if type(samples) is not np.ndarray and type(samples) is not list:
raise TypeError('\'samples\' must be a numpy array or a list')
for sample_index in range(0, N_samples):
stein_score_mass_array[sample_index] = MassSteinScoreSingleSample(samples[sample_index], data_dict)
return stein_score_mass_array
'''Functions for the Spectral Method to compute the Stein Score'''
def LargestEigValsVecs(kernel_array, J):
'''This function returns the J^th largest eigenvalues and eigenvectors
of the kernel matrix to compute score using spectral method'''
kernel_eigvals, kernel_eigvecs = LA.eig(kernel_array)
#put all eigenvalues and eigenvectors in dictionary
eig_dict = {}
eig_iterator = 0
for eigenvalue in kernel_eigvals:
eig_dict[eigenvalue] = kernel_eigvecs[:, eig_iterator]
eig_iterator += 1
#Put eigenvectors in dictionary corresponding to J^th largest eigenvalues
largest_eigvals = list(sorted(eig_dict.keys(), reverse = True))[0:J]
largest_eigvecs = []
for eigenvalue in largest_eigvals:
largest_eigvecs.append(eig_dict[eigenvalue])
return largest_eigvals, largest_eigvecs
def NystromEigenvectorsSingleSample(new_sample, samples, largest_eigvals, largest_eigvecs, J, stein_sigma):
'''This function computes the approximate eigenvectors psi of the
weighed kernel using the Nystrom method, for a given sample, x'''
psi = np.zeros((J)) #initialise numpy array for J^th approximate eigenvectors
M = len(samples)
np.set_printoptions(linewidth=np.inf)
kernel_array_single_sample = GaussianKernelArray(new_sample, samples, stein_sigma) #Compute 1 x len(samples) kernel array for a sample, with all others
for j in range(0, J):
psi[j] = np.real((np.sqrt(M)/largest_eigvals[j])*np.dot(kernel_array_single_sample, largest_eigvecs[j]))
return psi
def NystromEigenvectorsAllSamples(samples, largest_eigvals, largest_eigvecs, J, stein_sigma):
'''This function computes the set of nystrom eigenvectors for all samples'''
NystromEigenvectorsAllSamples = []
for sample in samples:
NystromEigenvectorsAllSamples.append(NystromEigenvectorsSingleSample(sample, samples, largest_eigvals, largest_eigvecs, J, stein_sigma))
return NystromEigenvectorsAllSamples
def SpectralBetaArray(samples, largest_eigvals, largest_eigvecs, J, stein_sigma):
N_qubits = len(samples[0])
#List of arrays of Nystrom eigenvectors, for all samples
psi_all_samples = NystromEigenvectorsAllSamples(samples, largest_eigvals, largest_eigvecs, J, stein_sigma)
D = len(samples)
#initialise array to be summed over with each index being
# (shifted bit, Nystrom eigenvec index, sample index)
beta_summand = np.zeros((N_qubits, D, J))
for bit_index in range(0, N_qubits):
for sample_index in range(0, D):
shifted_string = ShiftString(samples[sample_index], bit_index)
beta_summand[bit_index, sample_index, :]= psi_all_samples[sample_index] \
-NystromEigenvectorsSingleSample(shifted_string,samples,\
largest_eigvals, largest_eigvecs,\
J, stein_sigma)
beta = (1/D)*beta_summand.sum(axis = 1)
return beta
def SpectralSteinScoreSingleSample(new_sample, samples, largest_eigvals, largest_eigvecs, J, stein_sigma):
'''Compute Stein Score using Spectral method'''
beta = SpectralBetaArray(samples, largest_eigvals, largest_eigvecs, J, stein_sigma)
psi = NystromEigenvectorsSingleSample(new_sample, samples,\
largest_eigvals, largest_eigvecs,\
J, stein_sigma)
return np.dot(beta, psi)
def SpectralSteinScore(samples1, samples2, J, stein_sigma):
'''This function computes the Approximate Stein Score matrix for all samples using the spectral method '''
#samples2 are from the data distribution that we want the score function for
#samples1 are the samples from the Born Machine
kernel_array_all_samples = GaussianKernelArray(samples2, samples2, stein_sigma)
largest_eigvals, largest_eigvecs = LargestEigValsVecs(kernel_array_all_samples, J)
N_qubits = len(samples1[0])
N_samples = len(samples1)
stein_score_array_spectral = np.zeros((N_samples, N_qubits))
for sample_index in range(0, N_samples):
#Compute the Stein score for every sample in the Born machine, based on the data samples
sample1 = samples1[sample_index]
stein_score_array_spectral[sample_index] = SpectralSteinScoreSingleSample(sample1, samples2, \
largest_eigvals, largest_eigvecs,\
J, stein_sigma)
return stein_score_array_spectral
#####################################################################################################################
def ComputeScoreDifference(array_1, array_2, norm_type):
'''This function computes either the Frobenius Norm, Infinity norm or a simple sum difference
between the two arrays'''
if (norm_type is 'Frobenius'):
Norm = np.linalg.norm((array_1 - array_2), ord = None)
elif (norm_type is 'Infinity'):
Norm = np.linalg.norm(array_1 - array_2, ord = np.inf)
else: raise ValueError('\'norm_type\' must be \'Frobenius\', \'Infinity\'')
return Norm
def CheckScoreApproximationDifference(max_qubits, eta):
N_qubits_list = [i for i in range(2, max_qubits)]
stein_sigma = [0.25, 10, 100]
N_data_samples = [10, 20]
# N_data_samples = [10, 100, 200, 300, 400]
kernel_choice = 'Gaussian'
data_type = 'Classical_Data'
spectral_exact_diff, identity_exact_diff, mass_exact_diff = [np.zeros((len(N_qubits_list), len(N_data_samples))) for _ in range(3)]
for qubit_index in range(0, len(N_qubits_list)):
N_qubits = N_qubits_list[qubit_index]
for sample_index in range(0, len(N_data_samples)):
J = N_qubits + 2
N_samples = N_data_samples[sample_index]
data_samples, data_dict = DataImport(data_type, N_qubits, N_samples)
emp_data_dict = EmpiricalDist(data_samples, N_qubits)
stein_score_array_approx_identity = IdentitySteinScore(data_samples, kernel_choice, eta, stein_sigma)
# print('The Identity Score matrix is:\n' , stein_score_array_approx_identity)
stein_score_array_approx_spectral = SpectralSteinScore(data_samples, data_samples, J, stein_sigma)
# print('The Spectral Score matrix is:\n' , stein_score_array_approx_spectral)
stein_score_array_exact_mass = MassSteinScore(data_samples, data_dict)
# print('\nThe Exact Score matrix is:\n', stein_score_array_exact_mass)
stein_score_array_approx_mass = MassSteinScore(data_samples, emp_data_dict)
# print('\nThe Approx Score matrix using empirical density is:\n', stein_score_array_approx_mass)
spectral_exact_diff[qubit_index, sample_index] = ComputeScoreDifference(stein_score_array_approx_spectral, stein_score_array_exact_mass, 'Frobenius')
identity_exact_diff[qubit_index, sample_index] = ComputeScoreDifference(stein_score_array_approx_identity, stein_score_array_exact_mass, 'Frobenius')
mass_exact_diff[qubit_index, sample_index] = ComputeScoreDifference(stein_score_array_approx_mass, stein_score_array_exact_mass, 'Frobenius')
print('Difference between exact and spectral method is:', spectral_exact_diff[qubit_index, sample_index])
print('Difference between exact and identity method is:', identity_exact_diff[qubit_index, sample_index])
print('Difference between exact and density method is:', mass_exact_diff[qubit_index, sample_index])
return spectral_exact_diff, identity_exact_diff, mass_exact_diff, N_data_samples, N_qubits_list
max_qubits = 9
eta = 0.01
# J = 4
def PlotScoreGivenNumberSamples(max_qubits, N_samples, eta):
spectral_exact_diff, identity_exact_diff, mass_exact_diff, N_data_samples, N_qubits_list = CheckScoreApproximationDifference(max_qubits, eta)
fig, ax = plt.subplots()
spectral_exact_diff_plot = np.zeros((len(N_qubits_list)), dtype = int)
identity_exact_diff_plot = np.zeros((len(N_qubits_list)), dtype = int)
mass_exact_diff_plot = np.zeros((len(N_qubits_list)), dtype = int)
for qubit_index in range(0, len(N_qubits_list)):
spectral_exact_diff_plot[qubit_index] = spectral_exact_diff[qubit_index, N_data_samples.index(N_samples)]
identity_exact_diff_plot[qubit_index] = identity_exact_diff[qubit_index, N_data_samples.index(N_samples)]
mass_exact_diff_plot[qubit_index] = mass_exact_diff[qubit_index, N_data_samples.index(N_samples)]
ax.plot(spectral_exact_diff_plot, '%so' %('r'), label ='Spectral Score')
ax.plot(identity_exact_diff_plot, '%s+' %('b'), label ='Identity Score')
ax.plot(mass_exact_diff_plot, '%sx' %('g'), label ='Mass Score')
ax.set_title("Frobenius Norm of Score Matrix using %i samples," %(N_samples))
ax.set_xlabel("Number of Qubits")
ax.set_ylabel("Frobenius Norm")
ax.set_xticks(np.arange(len(N_qubits_list)))
ax.set_xticklabels(N_qubits_list)
ax.legend(('Spectral Score','Identity Score', 'Mass Score'))
plt.show()
return
# PlotScoreGivenNumberSamples(max_qubits, 10, eta)
# PlotScoreGivenNumberSamples(max_qubits, 20, eta)