-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsrp_phat_online.py
51 lines (43 loc) · 1.69 KB
/
srp_phat_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import csv
import time
import torch
import numpy as np
from src.utils.bss import Duet
from src.utils.cmd_parser import parsing_params
from src.utils.ssl import doa_detection
from src.mic.audio_recorder import get_microphone_chunks
def main():
params = parsing_params()
try:
with open(f"records/{time.strftime(r'%m_%d-%H_%M_%S')}.csv", "w", newline="", encoding="utf-8") as csv_file:
writer = csv.writer(csv_file)
writer.writerow(["s1_azi", "s1_ele", "s2_azi", "s2_ele", "s3_azi", "s3_ele", "s4_azi", "s4_ele"])
for sample_rate, waveform in get_microphone_chunks(
rate=16000,
chunk=1600,
n_channels=params.channels,
ignored_channels=params.ignored_channels,
min_to_cumulate=3,
max_to_cumulate=10,
):
duet = Duet(
waveform,
n_sources=params.src,
sample_rate=sample_rate,
delay_max=2.0,
n_delay_bins=50,
output_all_channels=True,
)
estimates = duet()
estimates = estimates.astype(np.float32)
print(f"Find {len(estimates)} available sources.")
doas = doa_detection(torch.from_numpy(estimates))
doas[doas[:, 0] < 0] += torch.FloatTensor([[360, 0]])
for doa in doas:
print(f"azi: {doa[0]: 6.1f}, ele: {doa[1]: 6.1f}")
print("="*51)
writer.writerow(doas.flatten().round().tolist())
except KeyboardInterrupt:
exit()
if __name__ == '__main__':
main()