-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdonut.c
186 lines (166 loc) · 5.83 KB
/
donut.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// donut.c by Andy Sloane (@a1k0n)
// https://gist.github.com/a1k0n/8ea6516b4946ab36348fb61703dc3194
// Bruno: added ANSI RGB rendering
#include "GL_tty.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#define WITH_RV32M
#define debug(...)
//#define debug printf
// torus radii and distance from camera
// these are pretty baked-in to other constants now, so it probably won't work
// if you change them too much.
const int dz = 5, r1 = 1, r2 = 2;
// "Magic circle algorithm"? DDA? I've seen this formulation in a few places;
// first in Hal Chamberlain's Musical Applications of Microprocessors, but not
// sure what to call it, or how to justify it theoretically. It seems to
// correctly rotate around a point "near" the origin, without losing magnitude
// over long periods of time, as long as there are enough bits of precision in x
// and y. I use 14 bits here.
#define R(s,x,y) x-=(y>>s); y+=(x>>s)
// CORDIC algorithm to find magnitude of |x,y| by rotating the x,y vector onto
// the x axis. This also brings vector (x2,y2) along for the ride, and writes
// back to x2 -- this is used to rotate the lighting vector from the normal of
// the torus surface towards the camera, and thus determine the lighting amount.
// We only need to keep one of the two lighting normal coordinates.
int length_cordic(int16_t x, int16_t y, int16_t *x2_, int16_t y2) {
int x2 = *x2_;
if (x < 0) { // start in right half-plane
x = -x;
x2 = -x2;
}
for (int i = 0; i < 8; i++) {
int t = x;
int t2 = x2;
if (y < 0) {
x -= y >> i;
y += t >> i;
x2 -= y2 >> i;
y2 += t2 >> i;
} else {
x += y >> i;
y -= t >> i;
x2 += y2 >> i;
y2 -= t2 >> i;
}
}
// divide by 0.625 as a cheap approximation to the 0.607 scaling factor factor
// introduced by this algorithm (see https://en.wikipedia.org/wiki/CORDIC)
*x2_ = (x2 >> 1) + (x2 >> 3);
return (x >> 1) + (x >> 3);
}
void main() {
// high-precision rotation directions, sines and cosines and their products
int16_t sB = 0, cB = 16384;
int16_t sA = 11583, cA = 11583;
int16_t sAsB = 0, cAsB = 0;
int16_t sAcB = 11583, cAcB = 11583;
GL_init();
for (;;) {
int x1_16 = cAcB << 2;
// yes this is a multiply but dz is 5 so it's (sb + (sb<<2)) >> 6 effectively
int p0x = dz * sB >> 6;
int p0y = dz * sAcB >> 6;
int p0z = -dz * cAcB >> 6;
const int r1i = r1*256;
const int r2i = r2*256;
int niters = 0;
int nnormals = 0;
int16_t yincC = (cA >> 6) + (cA >> 5); // 12*cA >> 8;
int16_t yincS = (sA >> 6) + (sA >> 5); // 12*sA >> 8;
int16_t xincX = (cB >> 7) + (cB >> 6); // 6*cB >> 8;
int16_t xincY = (sAsB >> 7) + (sAsB >> 6); // 6*sAsB >> 8;
int16_t xincZ = (cAsB >> 7) + (cAsB >> 6); // 6*cAsB >> 8;
int16_t ycA = -((cA >> 1) + (cA >> 4)); // -12 * yinc1 = -9*cA >> 4;
int16_t ysA = -((sA >> 1) + (sA >> 4)); // -12 * yinc2 = -9*sA >> 4;
//int dmin = INT_MAX, dmax = -INT_MAX;
for (int j = 0; j < 23; j++, ycA += yincC, ysA += yincS) {
int xsAsB = (sAsB >> 4) - sAsB; // -40*xincY
int xcAsB = (cAsB >> 4) - cAsB; // -40*xincZ;
int16_t vxi14 = (cB >> 4) - cB - sB; // -40*xincX - sB;
int16_t vyi14 = ycA - xsAsB - sAcB;
int16_t vzi14 = ysA + xcAsB + cAcB;
for (int i = 0; i < 79; i++, vxi14 += xincX, vyi14 -= xincY, vzi14 += xincZ) {
int t = 512; // (256 * dz) - r2i - r1i;
int16_t px = p0x + (vxi14 >> 5); // assuming t = 512, t*vxi>>8 == vxi<<1
int16_t py = p0y + (vyi14 >> 5);
int16_t pz = p0z + (vzi14 >> 5);
debug("pxyz (%+4d,%+4d,%+4d)\n", px, py, pz);
int16_t lx0 = sB >> 2;
int16_t ly0 = sAcB - cA >> 2;
int16_t lz0 = -cAcB - sA >> 2;
for (;;) {
int t0, t1, t2, d;
int16_t lx = lx0, ly = ly0, lz = lz0;
debug("[%2d,%2d] (px, py) = (%d, %d), (lx, ly) = (%d, %d) -> ", j, i, px, py, lx, ly);
t0 = length_cordic(px, py, &lx, ly);
debug("t0=%d (lx', ly') = (%d, %d)\n", t0, lx, ly);
t1 = t0 - r2i;
t2 = length_cordic(pz, t1, &lz, lx);
d = t2 - r1i;
t += d;
if (t > 8*256) {
GL_setpixelRGBhere(0,0,255-(j*255/GL_height));
break;
} else if (d < 2) {
int N = lz >> 5;
N = N < 0 ? 0 : N;
GL_setpixelRGBhere(N,N,0);
nnormals++;
break;
}
// todo: shift and add version of this
/*
if (d < dmin) dmin = d;
if (d > dmax) dmax = d;
*/
#ifdef WITH_RV32M
px += d*vxi14 >> 14;
py += d*vyi14 >> 14;
pz += d*vzi14 >> 14;
#else
{
// 11x1.14 fixed point 3x parallel multiply
// only 16 bit registers needed; starts from highest bit to lowest
// d is about 2..1100, so 11 bits are sufficient
int16_t dx = 0, dy = 0, dz = 0;
int16_t a = vxi14, b = vyi14, c = vzi14;
while (d) {
if (d&1024) {
dx += a;
dy += b;
dz += c;
}
d = (d&1023) << 1;
a >>= 1;
b >>= 1;
c >>= 1;
}
// we already shifted down 10 bits, so get the last four
px += dx >> 4;
py += dy >> 4;
pz += dz >> 4;
}
#endif
niters++;
}
}
GL_newline();
}
// printf("%d iterations %d lit pixels\x1b[K", niters, nnormals);
// fflush(stdout);
// rotate sines, cosines, and products thereof
// this animates the torus rotation about two axes
R(5, cA, sA);
R(5, cAsB, sAsB);
R(5, cAcB, sAcB);
R(6, cB, sB);
R(6, cAcB, cAsB);
R(6, sAcB, sAsB);
GL_swapbuffers();
GL_home();
}
}