Instructions/Scripts to (re)generate agent evaluation data i.e. the "behavioral assays". Only required if not using the downloaded data
Please perform these steps in order
- Be sure to have run the Prerequisites
- Run evaluation on all models in PLUMEZOO i.e. 14 RNNs and 14 MLPs x (2, 4, ... 12) timesteps of memory
- Select top-5 of each using tabulate.ipynb and either delete the rest or move these to a separate folder
ZOODIR=~/plume/plumezoo/latest/fly/memory/
FNAMES=$(find . -name "*.pt")
echo $FNAMES
MAXJOBS=24
DATASETS="constantx5b5 switch45x5b5 noisy3x5b5"
for DATASET in $DATASETS; do
for FNAME in $FNAMES; do
while (( $(jobs -p | wc -l) >= MAXJOBS )); do echo "Sleeping..."; sleep 10; done
LOGFILE=$(echo $FNAME | sed s/.pt/_${DATASET}.evallog/g)
SPARSE_MODIFIER=""
if [[ $DATASET == "constantx5b5" ]]; then
SPARSE_MODIFIER="--test_sparsity"
fi
nice python -u ~/plume/plume2/ppo/evalCli.py \
--dataset $DATASET \
--fixed_eval $SPARSE_MODIFIER \
--viz_episodes 20 \
--model_fname $FNAME >> $LOGFILE 2>&1 &
done
done
tail -f *.evallog
cd $PLUMEZOO
for DIR in $(ls -d plume*/); do
C2=$(grep HOME $DIR/constantx5b5_summary.csv | wc -l)
C3=$(grep HOME $DIR/switch45x5b5_summary.csv | wc -l)
C4=$(grep HOME $DIR/noisy3x5b5_summary.csv | wc -l)
C1=$(($C2 + $C3 + C4))
echo $C1 $C2 $C3 $C4 $DIR
done | sort -n
- Use
code/tabulate.ipynb
and either delete the rest or move these to a separate folder - Once you've run the agent evaluations, you can now proceed to Figure/Report generation