-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_tsr.py
277 lines (211 loc) · 10.8 KB
/
main_tsr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse, os
import torch
import random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from model_tsr_12 import model_tsr
from dataset_tsr import DatasetFromHdf5
import time, math
import numpy as np
from torchsummary import summary
from tensorboardX import SummaryWriter
# Training settings
parser = argparse.ArgumentParser(description="PyTorch Robust Temporal Super Resolution for Dynamic Motion Video")
parser.add_argument("--batchSize", type=int, default=1, help="Training batch size. Default: 16")
parser.add_argument("--nEpochs", type=int, default=100, help="Number of epochs to train for. Default: 100")
parser.add_argument("--lr", type=float, default=1e-4, help="Learning Rate. Default=1e-4")
parser.add_argument("--step", type=int, default=2,
help="Halves the learning rate for every n epochs. Default: n=2")
parser.add_argument("--cuda", action="store_true", help="Use cuda? Default: True")
parser.add_argument("--resume", default="", type=str, help="Path to checkpoint for resume. Default: None")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts). Default: 1")
parser.add_argument("--threads", type=int, default=0, help="Number of threads for data loader to use, Default: 0")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default: 0.9")
parser.add_argument("--weight-decay", "--wd", default=1e-4, type=float, help="weight decay, Default: 1e-4")
parser.add_argument("--pretrained", default="", type=str, help="path to pretrained model. Default: None")
parser.add_argument("--train_data0", default="./tsr_train_data0.h5", type=str, help="training data0 path.")
parser.add_argument("--train_data1", default="./tsr_train_data1.h5", type=str, help="training data1 path.")
parser.add_argument("--train_label", default="./tsr_train_label.h5", type=str, help="training label path.")
parser.add_argument("--valid_data0", default="./tsr_val_data0.h5", type=str, help="validation data0 path.")
parser.add_argument("--valid_data1", default="./tsr_val_data1.h5", type=str, help="validation data1 path.")
parser.add_argument("--valid_label", default="./tsr_val_label.h5", type=str, help="validation label path.")
parser.add_argument("--gpu", default='0', help="GPU number to use when training. ex) 0,1 Default: 0")
parser.add_argument("--checkpoint", default="./checkpoint", type=str,
help="Checkpoint path. Default: ./checkpoint ")
def main():
global opt, model, board
opt = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
print(opt)
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
train_path = []
train_path.append(opt.train_data0)
train_path.append(opt.train_data1)
train_path.append(opt.train_label)
train_set = DatasetFromHdf5(train_path)
valid_path = []
valid_path.append(opt.valid_data0)
valid_path.append(opt.valid_data1)
valid_path.append(opt.valid_label)
valid_set = DatasetFromHdf5(valid_path)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize,
shuffle=True)
validation_data_loader = DataLoader(dataset=valid_set, num_workers=opt.threads, batch_size=opt.batchSize,
shuffle=True)
print("===> Building model")
model = model_tsr()
L1_loss = nn.L1Loss()
#L2_loss = nn.MSELoss()
print("===> Setting GPU")
if cuda:
model = nn.DataParallel(model).cuda()
L1_loss = L1_loss.cuda()
summary(model, [(3, 640, 720), (3, 640, 720)])
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint["epoch"] + 1
model.load_state_dict(checkpoint["model"].state_dict())
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# optionally copy weights from a checkpoint
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("=> loading model '{}'".format(opt.pretrained))
weights = torch.load(opt.pretrained)
model.load_state_dict(weights['model'].state_dict())
else:
print("=> no model found at '{}'".format(opt.pretrained))
print("===> Setting Optimizer")
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
# optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay, nesterov=True)
board = SummaryWriter()
print("===> Training")
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizer, model, L1_loss, epoch, validation_data_loader)
def adjust_learning_rate(epoch):
lr = opt.lr
for i in range(epoch // opt.step):
lr = lr / 2
return lr
def train(training_data_loader, optimizer, model, L1_loss, epoch, validation_data_loader):
lr = adjust_learning_rate(epoch - 1)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print("epoch =", epoch, "lr =", optimizer.param_groups[0]["lr"])
model.train()
train_psnr = 0
loss_sum = 0
st = time.time()
for iteration, batch in enumerate(training_data_loader, 1):
input0, input1, label = Variable(batch[0]/255.), Variable(batch[1]/255.), Variable(batch[2]/255.)
[num_bat, num_c, patch_h, patch_w] = input0.shape
input0 = input0.numpy()
input1 = input1.numpy()
label = label.numpy()
a = np.random.randint(4, size=1)[0]
if a % 2 == 0:
for i in range(num_bat):
for j in range(num_c):
input0[i, j, :, :] = np.rot90(input0[i, j, :, :], a).copy()
input1[i, j, :, :] = np.rot90(input1[i, j, :, :], a).copy()
label[i, j, :, :] = np.rot90(label[i, j, :, :], a).copy()
else:
temp0 = np.zeros((num_bat, num_c, patch_w, patch_h))
temp1 = np.zeros((num_bat, num_c, patch_w, patch_h))
temp2 = np.zeros((num_bat, num_c, patch_w, patch_h))
[num_bat, num_c, patch_h, patch_w] = temp0.shape
for i in range(num_bat):
for j in range(num_c):
temp0[i, j, :, :] = np.rot90(input0[i, j, :, :], a).copy()
temp1[i, j, :, :] = np.rot90(input1[i, j, :, :], a).copy()
temp2[i, j, :, :] = np.rot90(label[i, j, :, :], a).copy()
del input0
del input1
del label
input0 = temp0
input1 = temp1
label = temp2
del temp0
del temp1
del temp2
if np.random.randint(2, size=1)[0] == 1:
for i in range(num_bat):
for j in range(num_c):
input0[i, j, :, :] = np.flip(input0[i, j, :, :], axis=1).copy()
input1[i, j, :, :] = np.flip(input1[i, j, :, :], axis=1).copy()
label[i, j, :, :] = np.flip(label[i, j, :, :], axis=1).copy()
if np.random.randint(2, size=1)[0] == 1:
for i in range(num_bat):
for j in range(num_c):
input0[i, j, :, :] = np.flip(input0[i, j, :, :], axis=0).copy()
input1[i, j, :, :] = np.flip(input1[i, j, :, :], axis=0).copy()
label[i, j, :, :] = np.flip(label[i, j, :, :], axis=0).copy()
input0 = Variable(torch.from_numpy(input0).float()).view(num_bat, num_c, patch_h, patch_w)
input1 = Variable(torch.from_numpy(input1).float()).view(num_bat, num_c, patch_h, patch_w)
label = Variable(torch.from_numpy(label).float()).view(num_bat, num_c, patch_h, patch_w)
if opt.cuda:
input0 = input0.cuda()
input1 = input1.cuda()
label = label.cuda()
output = model(input0, input1)
loss = L1_loss(output, label)
train_psnr += output_psnr_mse(label.cpu().detach().numpy(), output.cpu().detach().numpy())
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_sum += loss.item()
if iteration % int(len(training_data_loader)/10.) == 0:
model.eval()
val_psnr = 0
for it, batch in enumerate(validation_data_loader, 1):
input0, input1, label = Variable(batch[0]/255.), Variable(batch[1]/255.), Variable(batch[2]/255.)
if opt.cuda:
input0 = input0.cuda()
input1 = input1.cuda()
with torch.no_grad():
val_out = model(input0, input1)
val_out = val_out.cpu().data[0].numpy()
label = label.data[0].numpy()
val_psnr += output_psnr_mse(label, val_out)
val_psnr /= len(validation_data_loader)
avg_loss = loss_sum / iteration
print(
"===> Epoch[{}]({}/{}): Train_Loss: {:.10f} Val_PSNR: {:.4f} Train_PSNR: {:.4f}".format(
epoch, iteration, len(training_data_loader), avg_loss, val_psnr, train_psnr / iteration))
board.add_scalar('avg_loss', avg_loss, iteration + len(training_data_loader) * (epoch - 1))
board.add_scalar('val_PSNR', val_psnr, iteration + len(training_data_loader) * (epoch - 1))
board.add_scalar('train_PSNR', train_psnr / iteration, iteration + len(training_data_loader) * (epoch - 1))
model.train()
save_checkpoint(model, epoch, iteration, train_psnr / iteration, val_psnr, avg_loss)
print("training_time: ", time.time() - st)
def save_checkpoint(model, epoch, iteration, tpsnr, vpsnr, loss):
model_folder = opt.checkpoint
model_out_path = model_folder + "/model_epoch_{}_iter_{}_TPSNR1_{:.4f}_VPSNR_{:.4f}_loss_{:.8f}.pth".format(
epoch, iteration, tpsnr, vpsnr, loss)
state = {"epoch": epoch, "model": model}
if not os.path.exists(model_folder):
os.makedirs(model_folder)
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def output_psnr_mse(img_orig, img_out):
squared_error = np.square(img_orig - img_out)
mse = np.mean(squared_error)
psnr = 10 * np.log10(1.0 / mse)
return psnr
if __name__ == "__main__":
main()