-
Notifications
You must be signed in to change notification settings - Fork 111
/
demo_MiddleBury.py
181 lines (141 loc) · 6.75 KB
/
demo_MiddleBury.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import time
import os
from torch.autograd import Variable
import math
import torch
import random
import numpy as np
import numpy
import networks
from my_args import args
from scipy.misc import imread, imsave
from AverageMeter import *
torch.backends.cudnn.benchmark = True # to speed up the
DO_MiddleBurryOther = True
MB_Other_DATA = "./MiddleBurySet/other-data/"
MB_Other_RESULT = "./MiddleBurySet/other-result-author/"
MB_Other_GT = "./MiddleBurySet/other-gt-interp/"
if not os.path.exists(MB_Other_RESULT):
os.mkdir(MB_Other_RESULT)
model = networks.__dict__[args.netName](channel=args.channels,
filter_size = args.filter_size ,
timestep=args.time_step,
training=False)
if args.use_cuda:
model = model.cuda()
args.SAVED_MODEL = './model_weights/best.pth'
if os.path.exists(args.SAVED_MODEL):
print("The testing model weight is: " + args.SAVED_MODEL)
if not args.use_cuda:
pretrained_dict = torch.load(args.SAVED_MODEL, map_location=lambda storage, loc: storage)
# model.load_state_dict(torch.load(args.SAVED_MODEL, map_location=lambda storage, loc: storage))
else:
pretrained_dict = torch.load(args.SAVED_MODEL)
# model.load_state_dict(torch.load(args.SAVED_MODEL))
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)
# 4. release the pretrained dict for saving memory
pretrained_dict = []
else:
print("*****************************************************************")
print("**** We don't load any trained weights **************************")
print("*****************************************************************")
model = model.eval() # deploy mode
use_cuda=args.use_cuda
save_which=args.save_which
dtype = args.dtype
unique_id =str(random.randint(0, 100000))
print("The unique id for current testing is: " + str(unique_id))
interp_error = AverageMeter()
if DO_MiddleBurryOther:
subdir = os.listdir(MB_Other_DATA)
gen_dir = os.path.join(MB_Other_RESULT, unique_id)
os.mkdir(gen_dir)
tot_timer = AverageMeter()
proc_timer = AverageMeter()
end = time.time()
for dir in subdir:
print(dir)
os.mkdir(os.path.join(gen_dir, dir))
arguments_strFirst = os.path.join(MB_Other_DATA, dir, "frame10.png")
arguments_strSecond = os.path.join(MB_Other_DATA, dir, "frame11.png")
arguments_strOut = os.path.join(gen_dir, dir, "frame10i11.png")
gt_path = os.path.join(MB_Other_GT, dir, "frame10i11.png")
X0 = torch.from_numpy( np.transpose(imread(arguments_strFirst) , (2,0,1)).astype("float32")/ 255.0).type(dtype)
X1 = torch.from_numpy( np.transpose(imread(arguments_strSecond) , (2,0,1)).astype("float32")/ 255.0).type(dtype)
y_ = torch.FloatTensor()
assert (X0.size(1) == X1.size(1))
assert (X0.size(2) == X1.size(2))
intWidth = X0.size(2)
intHeight = X0.size(1)
channel = X0.size(0)
if not channel == 3:
continue
if intWidth != ((intWidth >> 7) << 7):
intWidth_pad = (((intWidth >> 7) + 1) << 7) # more than necessary
intPaddingLeft =int(( intWidth_pad - intWidth)/2)
intPaddingRight = intWidth_pad - intWidth - intPaddingLeft
else:
intWidth_pad = intWidth
intPaddingLeft = 32
intPaddingRight= 32
if intHeight != ((intHeight >> 7) << 7):
intHeight_pad = (((intHeight >> 7) + 1) << 7) # more than necessary
intPaddingTop = int((intHeight_pad - intHeight) / 2)
intPaddingBottom = intHeight_pad - intHeight - intPaddingTop
else:
intHeight_pad = intHeight
intPaddingTop = 32
intPaddingBottom = 32
pader = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight , intPaddingTop, intPaddingBottom])
torch.set_grad_enabled(False)
X0 = Variable(torch.unsqueeze(X0,0))
X1 = Variable(torch.unsqueeze(X1,0))
X0 = pader(X0)
X1 = pader(X1)
if use_cuda:
X0 = X0.cuda()
X1 = X1.cuda()
proc_end = time.time()
y_s,offset,filter = model(torch.stack((X0, X1),dim = 0))
y_ = y_s[save_which]
proc_timer.update(time.time() -proc_end)
tot_timer.update(time.time() - end)
end = time.time()
print("*****************current image process time \t " + str(time.time()-proc_end )+"s ******************" )
if use_cuda:
X0 = X0.data.cpu().numpy()
y_ = y_.data.cpu().numpy()
offset = [offset_i.data.cpu().numpy() for offset_i in offset]
filter = [filter_i.data.cpu().numpy() for filter_i in filter] if filter[0] is not None else None
X1 = X1.data.cpu().numpy()
else:
X0 = X0.data.numpy()
y_ = y_.data.numpy()
offset = [offset_i.data.numpy() for offset_i in offset]
filter = [filter_i.data.numpy() for filter_i in filter]
X1 = X1.data.numpy()
X0 = np.transpose(255.0 * X0.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
y_ = np.transpose(255.0 * y_.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
offset = [np.transpose(offset_i[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0)) for offset_i in offset]
filter = [np.transpose(
filter_i[0, :, intPaddingTop:intPaddingTop + intHeight, intPaddingLeft: intPaddingLeft + intWidth],
(1, 2, 0)) for filter_i in filter] if filter is not None else None
X1 = np.transpose(255.0 * X1.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
imsave(arguments_strOut, np.round(y_).astype(numpy.uint8))
rec_rgb = imread(arguments_strOut)
gt_rgb = imread(gt_path)
diff_rgb = 128.0 + rec_rgb - gt_rgb
avg_interp_error_abs = np.mean(np.abs(diff_rgb - 128.0))
interp_error.update(avg_interp_error_abs, 1)
mse = numpy.mean((diff_rgb - 128.0) ** 2)
PIXEL_MAX = 255.0
psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
print("interpolation error / PSNR : " + str(round(avg_interp_error_abs,4)) + " / " + str(round(psnr,4)))
metrics = "The average interpolation error / PSNR for all images are : " + str(round(interp_error.avg, 4))
print(metrics)