-
Notifications
You must be signed in to change notification settings - Fork 9
/
visualize_groundtruth.py
721 lines (651 loc) · 27.6 KB
/
visualize_groundtruth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
# coding: utf-8
'''
File: visualize_groundtruth.py
Project: CAMMA-MVOR
-----
Copyright (c) University of Strasbourg, All Rights Reserved.
'''
import argparse
import json
import cv2
import os
import sys
import numpy as np
import itertools
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D
from IPython.display import HTML, display
plt.ion()
color_brightness = 150
cc = {}
cc['r'] = (0, 0, color_brightness)
cc['g'] = (0, color_brightness, 0)
cc['b'] = (color_brightness, 0, 0)
cc['c'] = (color_brightness, color_brightness, 0)
cc['m'] = (color_brightness, 0, color_brightness)
cc['y'] = (0, color_brightness, color_brightness)
cc['w'] = (color_brightness, color_brightness, color_brightness)
cc['k'] = (0, 0, 0)
cc['t1'] = (205, 97, 85)
cc['t2'] = (33, 97, 140)
cc['t3'] = (23, 165, 137)
cc['t4'] = (125, 102, 8)
cc['t5'] = (230, 126, 34)
cc['t6'] = (211, 84, 0)
cc['t7'] = (52, 73, 94)
cc['t8'] = (102, 255, 153)
cc['t9'] = (51, 0, 204)
cc['t10'] = (255, 0, 204)
cir_radius = 3
max_persons = 100
""" predefined first 20 colors """
colors_arr = {}
colors_arr[0] = (0, 0, color_brightness)
colors_arr[1] = (0, color_brightness, 0)
colors_arr[2] = (color_brightness, 0, 0)
colors_arr[3] = (color_brightness, color_brightness, 0)
colors_arr[4] = (color_brightness, 0, color_brightness)
colors_arr[5] = (0, color_brightness, color_brightness)
colors_arr[6] = (color_brightness, color_brightness / 2, 255 - color_brightness / 2)
colors_arr[7] = (color_brightness / 2, 255 - color_brightness / 2, color_brightness)
colors_arr[8] = (color_brightness, color_brightness / 2, 255 - color_brightness / 2)
colors_arr[9] = (color_brightness / 2, 255 - color_brightness / 2, color_brightness / 2)
colors_arr[10] = (0, 0, color_brightness / 2)
colors_arr[11] = (0, color_brightness / 2, 0)
colors_arr[12] = (color_brightness / 2, 0, 0)
colors_arr[13] = (color_brightness / 2, color_brightness / 2, 0)
colors_arr[14] = (color_brightness / 2, 0, color_brightness / 2)
colors_arr[15] = (0, color_brightness / 2, color_brightness / 2)
colors_arr[16] = (color_brightness / 2, color_brightness / 4, 255 - color_brightness / 4)
colors_arr[17] = (color_brightness / 4, 255 - color_brightness / 4, color_brightness / 2)
colors_arr[18] = (color_brightness / 2, color_brightness / 4, 255 - color_brightness / 4)
colors_arr[19] = (color_brightness / 4, 255 - color_brightness / 4, color_brightness / 4)
camma_colors = ['t1', 't2', 't3', 't4', 't5', 't6', 't7', 't8', 't9', 't10']
camma_colors_float = [(0.7, 0.7, 0.0, 0.5), (0.0, 0.7, 0.0, 0.5), (0.7, 0.0, 0.7, 0.5),
(0.0, 0.7, 0.0, 0.5), (0.7, 0.0, 0.7, 0.5), (0.0, 0.7, 0.0, 0.5),
(0.7, 0.0, 0.7, 0.5), (0.0, 0.7, 0.0, 0.5), (0.7, 0.0, 0.7, 0.5),
(0.0, 0.7, 0.0, 0.5)]
camma_pairs = [[1, 2], [2, 4], [4, 8], [4, 6], [8, 10], [2, 3],
[3, 5], [3, 7], [7, 9], [5, 6]]
camma_colors_skeleton = ['y', 'g', 'g', 'g', 'g', 'm', 'm', 'm', 'm', 'm']
camma_part_names = ['head', 'neck', 'left_shoulder', 'right_shoulder', 'left_hip',
'right_hip', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist']
def str2bool(v):
"""
convert string to boolean (string passed through command line arguments)
:param v: string argument ('yes', 'true', 't', 'y', '1' => for logical true;
'no', 'false', 'f', 'n', '0' => for logical false)
:return: boolean
"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_args():
"""
parse the command line arguments run python visualize_groundtruth.py -h to see command line options
:return:
"""
parser = argparse.ArgumentParser(description='Visualize the multiview OR CAMMA RGBD dataset')
parser.add_argument(
'--inp_json',
type=str,
default='',
help='path to input json file containing 2D and 3D keypoints'
)
parser.add_argument(
'--img_dir',
type=str,
default='',
help='path to the image directory'
)
parser.add_argument(
'--viz_attr',
type=str,
default="false",
help='visualize the annotation attributes such as person role, joint names etc'
)
parser.add_argument(
'--viz_3D',
type=str,
default="false",
help='visualize the 3D annotations'
)
parser.add_argument(
'--viz_2D',
type=str,
default="false",
help='visualize the 2D annotations'
)
parser.add_argument(
'--show_ann',
type=str,
default="true",
help='Show the annotations'
)
parser.add_argument(
'--show_3dto2dproj',
type=str,
default="true",
help='Show the 3D to 2D projections on the 2D images'
)
parser.add_argument(
'--show_pose_variability',
type=str,
default="false",
help='Show the pose variability of the 2D annotations'
)
parser.add_argument(
'--save_gt',
type=str,
default='',
help='it will not render anything on the screen but write the visualizations on the given path'
)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def coco_to_camma_kps(coco_kps):
"""
convert coco keypoints(17) to camma-keypoints(10)
:param coco_kps: 17 keypoints of coco
:return: camma_keypoints
"""
num_keypoints = 10
camma_kps = np.zeros((num_keypoints, 3))
nose = coco_kps[0, :]
leye = coco_kps[1, :]
reye = coco_kps[2, :]
lear = coco_kps[3, :]
rear = coco_kps[4, :]
if leye[-1] > 0 and reye[-1] > 0:
camma_kps[0, :] = ((leye + reye) / 2).reshape(1, 3)
elif lear[-1] > 0 and rear[-1] > 0:
camma_kps[0, :] = ((lear + rear) / 2).reshape(1, 3)
elif nose[-1] > 0:
camma_kps[0, :] = nose.reshape(1, 3)
elif reye[-1] > 0:
camma_kps[0, :] = reye.reshape(1, 3)
elif leye[-1] > 0:
camma_kps[0, :] = leye.reshape(1, 3)
elif rear[-1] > 0:
camma_kps[0, :] = rear.reshape(1, 3)
elif lear[-1] > 0:
camma_kps[0, :] = lear.reshape(1, 3)
else:
camma_kps[0, :] = np.array([0, 0, 0]).reshape(1, 3)
lshoulder = coco_kps[5, :]
rshoulder = coco_kps[6, :]
lhip = coco_kps[11, :]
rhip = coco_kps[12, :]
lelbow = coco_kps[7, :]
relbow = coco_kps[8, :]
lwrist = coco_kps[9, :]
rwrist = coco_kps[10, :]
if lshoulder[-1] > 0 and rshoulder[-1] > 0:
camma_kps[1, :] = ((lshoulder + rshoulder) / 2).reshape(1, 3)
elif rshoulder[-1] > 0:
camma_kps[1, :] = rshoulder.reshape(1, 3)
elif lshoulder[-1] > 0:
camma_kps[1, :] = lshoulder.reshape(1, 3)
else:
camma_kps[1, :] = np.array([0, 0, 0]).reshape(1, 3)
if lshoulder[-1] > 0:
camma_kps[2, :] = lshoulder.reshape(1, 3)
if rshoulder[-1] > 0:
camma_kps[3, :] = rshoulder.reshape(1, 3)
if lhip[-1] > 0:
camma_kps[4, :] = lhip.reshape(1, 3)
if rhip[-1] > 0:
camma_kps[5, :] = rhip.reshape(1, 3)
if lelbow[-1] > 0:
camma_kps[6, :] = lelbow.reshape(1, 3)
if relbow[-1] > 0:
camma_kps[7, :] = relbow.reshape(1, 3)
if lwrist[-1] > 0:
camma_kps[8, :] = lwrist.reshape(1, 3)
if rwrist[-1] > 0:
camma_kps[9, :] = rwrist.reshape(1, 3)
return camma_kps
def viz2d(inp, annotations, viz_attributes=False, viz_projection=False):
"""
2D annotations visualization
:param im: input image
:param annotations: ground truth annotations
:param viz_attributes: whether to show the attributes
:param viz_projection: whether to show the 3D to 2D projections
:return: image with rendered anootations
"""
im = inp.copy()
countPerson = 0
height, width, layers = im.shape
if not viz_projection:
for person in annotations:
rect = person['bbox']
cv2.rectangle(im, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])),
colors_arr[countPerson], thickness=1, lineType=cv2.LINE_AA)
if not bool(person['only_bbox']):
cv2.rectangle(im, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])),
colors_arr[countPerson], thickness=1, lineType=cv2.LINE_AA)
pose = np.array(person['keypoints']).reshape(-1, 3)[:, :3]
cv2.rectangle(im, (int(rect[0]), int(rect[1] + 13)),
(int(rect[0] + rect[2]), int(rect[1])),
(0, 0, 0), thickness=-1)
if viz_attributes:
person_role = person['person_role']
str_disp = 'person(' + str(person['person_id']) + ')(' + person_role + ')'
else:
# str_disp = 'person(' + str(person['person_id']) + ')' + '(' + person['id'] + ')'
str_disp = 'person(' + str(person['person_id']) + ')'
cv2.putText(im, str_disp, (int(rect[0]), int(rect[1] + 10)),
cv2.FONT_HERSHEY_COMPLEX_SMALL, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
if pose.shape[0] == 10:
for idx in range(len(camma_colors_skeleton)):
pt1 = (int(np.clip(pose[camma_pairs[idx][0] - 1, 0], 0, width)),
int(np.clip(pose[camma_pairs[idx][0] - 1, 1], 0, height)))
pt2 = (int(np.clip(pose[camma_pairs[idx][1] - 1, 0], 0, width)),
int(np.clip(pose[camma_pairs[idx][1] - 1, 1], 0, height)))
if 0 not in pt1 + pt2:
cv2.line(im, pt1, pt2, cc[camma_colors_skeleton[idx]], 3, cv2.LINE_AA)
""" draw the skelton points """
for idx_c, color in enumerate(camma_colors):
pt = (int(np.clip(pose[idx_c, 0], 0, width)),
int(np.clip(pose[idx_c, 1], 0, height)))
if 0 not in pt:
cv2.circle(im, pt, 3, cc[color], 2, cv2.LINE_AA)
if viz_attributes:
cv2.putText(im, camma_part_names[idx_c], pt, cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 255),
2)
countPerson += 1
else:
pose = annotations[:, 0:10]
if pose.shape[1] == 10:
for idx in range(len(camma_colors_skeleton)):
pt1 = (int(np.clip(pose[0, camma_pairs[idx][0] - 1], 0, width)),
int(np.clip(pose[1, camma_pairs[idx][0] - 1], 0, height)))
pt2 = (int(np.clip(pose[0, camma_pairs[idx][1] - 1], 0, width)),
int(np.clip(pose[1, camma_pairs[idx][1] - 1], 0, height)))
if 0 not in pt1 + pt2:
cv2.line(im, pt1, pt2, (200, 200, 200), 1, cv2.LINE_AA)
""" draw the skelton points """
for idx_c, color in enumerate(camma_colors):
pt = (int(np.clip(pose[0, idx_c], 0, width)),
int(np.clip(pose[1, idx_c], 0, height)))
if 0 not in pt:
cv2.circle(im, pt, 2, cc[color], 2, cv2.LINE_AA)
return im
def transformGivenTrfMatrix(ann3d, tr_mat):
"""
Transform the 3D points from one coordiate system to another given 4x4 transformation matrix
:param ann3d: input 3D points
:param tr_mat: 4x4 transformation matrix
:return: transformed 3D points
"""
X = ann3d['keypoints3D'][0::4]
Y = ann3d['keypoints3D'][1::4]
Z = ann3d['keypoints3D'][2::4]
pt3d = np.vstack((X, Y, Z, np.ones(len(X))))
# transform points to room coordinate
pt3d = np.dot(tr_mat, pt3d)
pt3d = pt3d[0:3]
return pt3d
def projectCam3DTo2D(pose3D, camparam):
"""
Project 3D point in camera coordinates to image given intrinsic camera parameters (focal-length and principal-point)
:param pose3D: 3D points in camera coordinates
:param camparam: intrinsic camera parameters
:return: 2D point on the images
"""
focal = camparam['focallength']
pp = camparam['principalpoint']
pose3D[2][pose3D[2] == 0.0] = 1.0 # replace zero with 1 to avoid divide by zeros
p1 = ((np.divide(pose3D[0], pose3D[2])) * focal[0]) + pp[0]
p2 = ((np.divide(pose3D[1], pose3D[2])) * focal[1]) + pp[1]
return np.vstack((p1, p2))
def createopencvwindows():
"""
create opencv windows to display images
:return:
"""
cv2.namedWindow("cam-1")
cv2.moveWindow("cam-1", 0, 0)
cv2.namedWindow("cam-2")
cv2.moveWindow("cam-2", 660, 0)
cv2.namedWindow("cam-3")
cv2.moveWindow("cam-3", 320, 540)
def create_index(camma_mvor_gt):
"""
get the 2D and 3D annotations for each image from the coco style annotations
:param camma_mvor_gt: ground truth dict
:return: 2D and 3D annotations dictionary; key=image_id, value = 2D or 3D annotations
"""
im_ids_2d = [p['id'] for p in camma_mvor_gt['images']]
im_ids_3d = [p['id'] for p in camma_mvor_gt['multiview_images']]
mv3d_paths = {p["id"]:p["images"] for p in camma_mvor_gt['multiview_images']}
imid_to_path = {p["id"]:p["file_name"] for p in camma_mvor_gt['images']}
anns_2d = {str(key): [] for key in im_ids_2d}
anns_3d = {str(key): [] for key in im_ids_3d}
print('creating index for 2D annotations')
for ann in camma_mvor_gt['annotations']:
anns_2d[str(ann['image_id'])].append({
'keypoints': ann['keypoints'],
'bbox': ann['bbox'],
'person_id': ann['person_id'],
'person_role': ann['person_role'],
'only_bbox': ann['only_bbox'],
'id': ann['id']
})
print('done')
print('creating index for 3D annotations')
for ann3d in camma_mvor_gt['annotations3D']:
anns_3d[str(ann3d['image_ids'])].append({
'id': ann3d['id'],
'person_id': ann3d['person_id'],
'ref_camera': ann3d['ref_camera'],
'keypoints3D': ann3d['keypoints3D']
})
print('Index creation done')
return anns_2d, anns_3d, mv3d_paths, imid_to_path
def progress_bar(value, max=100):
""" A HTML helper function to display the progress bar
Args:
value ([int]): [current progress bar value]
max (int, optional): [maximum value]. Defaults to 100.
Returns:
[str]: [HTML progress bar string]
"""
return HTML(
"""
<progress
value='{value}'
max='{max}',
style='width: 100%'
>
{value}
</progress>
""".format(
value=value, max=max
)
)
def bgr2rgb(im):
"""[convert opencv image in BGR format to RGB format]
Args:
im ([numpy.ndarray]): [input image in BGR format]
Returns:
[numpy.ndarray]: [output image in RGB format]
"""
b, g, r = cv2.split(im)
return cv2.merge([r, g, b])
def plt_imshow(im, title=''):
"""
show the 2D plot using matplotlib
:param im: input image
:param title: title of the plot
:return:
"""
im = bgr2rgb(im)
if title:
plt.title(title, fontsize=7)
plt.gca().set_xticks([])
plt.gca().set_yticks([])
plt.subplots_adjust(left=0.01, bottom=0.01, right=1.0, top=1.0, wspace=0.01, hspace=0.01)
plt.imshow(im)
def rect_prism(ax, x_range, y_range, z_range):
"""
plot the 3d rectangle
:param x_range:
:param y_range:
:param z_range:
:return:
"""
xx, yy = np.meshgrid(x_range, y_range)
zz = z_range[0] * np.ones(xx.shape)
ax.plot_wireframe(xx, yy, zz, color="g")
ax.plot_surface(xx, yy, zz, color="g", alpha=0.5)
zz = z_range[1] * np.ones(xx.shape)
ax.plot_wireframe(xx, yy, zz, color="g")
ax.plot_surface(xx, yy, zz, color="g", alpha=0.5)
yy, zz = np.meshgrid(y_range, z_range)
xx = x_range[0] * np.ones(yy.shape)
ax.plot_wireframe(xx, yy, zz, color="g")
ax.plot_surface(xx, yy, zz, color="g", alpha=0.5)
xx = x_range[1] * np.ones(yy.shape)
ax.plot_wireframe(xx, yy, zz, color="g")
ax.plot_surface(xx, yy, zz, color="g", alpha=0.5)
xx, zz = np.meshgrid(x_range, z_range)
yy = y_range[0] * np.ones(zz.shape)
ax.plot_wireframe(xx, yy, zz, color="g")
ax.plot_surface(xx, yy, zz, color="g", alpha=0.5)
yy = y_range[1] * np.ones(zz.shape)
ax.plot_wireframe(xx, yy, zz, color="g")
ax.plot_surface(xx, yy, zz, color="g", alpha=0.5)
def plt_3dplot(fig, anns3d, camma_mvor_gt):
"""
plot the 3D annotations on the given fig
:param fig: input figure
:param anns3d: 3D annotations
:param camma_mvor_gt: ground truth dictionary
:return:
"""
ax = fig.add_subplot(2, 2, 4, projection='3d')
ax.tick_params()
ax.tick_params(labelsize=3)
plt.title('3D view', fontsize=7)
for ann3d in anns3d:
tr_mat = np.array(camma_mvor_gt['cameras_info']['camParams'][
'firstCamToRoomRef']).reshape((4, 4))
pt3d = transformGivenTrfMatrix(ann3d, tr_mat)
pers_id = ann3d['person_id']
for idx in range(len(camma_colors_skeleton)):
pt1 = pt3d[:, camma_pairs[idx][0] - 1][0:3]
pt2 = pt3d[:, camma_pairs[idx][1] - 1][0:3]
ax.plot([pt1[0], pt2[0]], [pt1[1], pt2[1]], camma_colors_skeleton[idx], zs=[pt1[2], pt2[2]],
alpha=0.7, linewidth=0.7)
# plot 3D circles
for idx in range(len(camma_colors)):
pt = pt3d[:, idx][0:3]
ax.scatter(pt[0], pt[1], pt[2], s=10, c=camma_colors_float[idx], marker='o')
# plot text
pt = pt3d[:, 0][0:3]
# str_per = 'person(' + str(pers_id) + ')'
# ax.text(pt[0], pt[1], pt[2], str(pers_id) + '(' + ann3d['id'] + ')', 'y', fontsize=10)
ax.text(pt[0], pt[1], pt[2], str(pers_id), 'y', fontsize=6)
# rect_prism(ax, np.array([-1000, -500]), np.array([750, 1500]), np.array([-10, 10]))
# plt.xlabel('x')
# plt.ylabel('y')
# ax.set_xticks([])
# ax.set_yticks([])
# ax.set_zticks([])
ax.set_xlim(-1000, 1000)
ax.set_ylim(-200, 2500)
ax.set_zlim(-200, 600)
# plt.subplots_adjust(left=0.01, bottom=0.01, right=1.0, top=1.0, wspace=0.01, hspace=0.01)
def visualize_pose_variability(gt):
"""
:param gt: ground truth
:return:
## 0 1 2 3 4 5 6 7 8 9
## Head, Neck, LShould, Rshould, LHip, Rhip, Lelb, Relb, LWri, Rwri
"""
joints = [[0, 1], [2, 6], [6, 8], [3, 7], [7, 9], [1, 10]]
colors = [(0, 0, 0), (0, 255, 0), (255, 0, 0), (255, 255, 51), (0, 0, 255), (0, 255, 255)]
default_kps = np.array([250, 150, 1,
250, 250, 1,
270, 280, 1,
230, 280, 1,
350, 430, 1,
150, 430, 1,
350, 330, 1,
150, 330, 1,
370, 390, 1,
130, 390, 1])
centered_kps = []
for ann in gt['annotations']:
if 'keypoints' in ann.keys():
kps = ann['keypoints']
if np.count_nonzero(kps) > 0:
neck = np.array(kps[3:5])
diff = np.array([250, 250]) - neck
new_kps = np.zeros(10 * 3, dtype=int)
for i in range(0, 10):
new_kps[i * 3] = kps[i * 3] + diff[0]
new_kps[i * 3 + 1] = kps[i * 3 + 1] + diff[1]
new_kps[i * 3 + 2] = kps[i * 3 + 2]
kps = [int(kp) for kp in kps]
centered_kps.append(new_kps)
img = np.ones((500, 500, 3), np.uint8) * 255
for kps in centered_kps:
for j, jt in enumerate(joints):
if jt[1] == 10: ##joint is neck -> center hip
center_hip = (kps[4 * 3:4 * 3 + 2] + kps[5 * 3:5 * 3 + 2]) / 2
center_hip = [int(pt) for pt in center_hip]
if kps[jt[0] * 3 + 2] > 0 and kps[4 * 3 + 2] > 0 and kps[5 * 3 + 2]:
cv2.line(img, (center_hip[0], center_hip[1]), (kps[3], kps[4]), colors[j], 1,
lineType=cv2.LINE_AA)
else:
if kps[jt[0] * 3 + 2] > 0 and kps[jt[1] * 3 + 2] > 0:
cv2.line(img, (kps[jt[0] * 3], kps[jt[0] * 3 + 1]), (kps[jt[1] * 3], kps[jt[1] * 3 + 1]), colors[j],
1, lineType=cv2.LINE_AA)
img_bodyparts = np.ones((500, 500, 3), np.uint8) * 255
for j, jt in enumerate(joints):
if jt[1] == 10:
cv2.line(img_bodyparts, (250, 280), (250, 400), colors[j], 10,
lineType=cv2.LINE_AA)
else:
cv2.line(img_bodyparts, (default_kps[jt[0] * 3], default_kps[jt[0] * 3 + 1]),
(default_kps[jt[1] * 3], default_kps[jt[1] * 3 + 1]),
colors[j], 10, lineType=cv2.LINE_AA)
cv2.putText(img_bodyparts, 'Color coding of the body parts',
(100, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (23, 134, 0), 1)
cv2.putText(img, 'Pose variablity of the 2D annotations', (100, 90),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (23, 134, 0), 1)
img = np.hstack((img_bodyparts, img))
#cv2.imwrite('pose_variability.png', img)
cv2.imshow("Visualization of upper body pose variability", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def main(args):
# Get the command line arguments
inp_json = args.inp_json
img_dir = args.img_dir
viz_attr = str2bool(args.viz_attr)
viz_3d = str2bool(args.viz_3D)
viz_2d = str2bool(args.viz_2D)
show_ann = str2bool(args.show_ann)
save_gt = args.save_gt
show_3dto2dproj = str2bool(args.show_3dto2dproj)
show_pos_var = str2bool(args.show_pose_variability)
if not img_dir:
print('image dir missing')
sys.exit(1)
# Get the ground truth annotations
if inp_json:
with open(inp_json) as f:
camma_mvor_gt = json.load(f)
else:
print('input json not given. Exiting...')
sys.exit(1)
if show_pos_var:
visualize_pose_variability(camma_mvor_gt)
if show_ann:
# iterate over images
# create the index
anno_2d, anno3d = create_index(camma_mvor_gt)
if viz_3d:
fig = plt.figure(figsize=plt.figaspect(0.75))
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 1280
fig_size[1] = 1000
plt.rcParams["figure.figsize"] = fig_size
else:
createopencvwindows()
# count3d = 0
for index, images in enumerate(camma_mvor_gt['multiview_images']):
(img1, img2, img3) = (images['images'][0], images['images'][1], images['images'][2])
im1 = cv2.imread(os.path.join(img_dir, img1['file_name']))
im2 = cv2.imread(os.path.join(img_dir, img2['file_name']))
im3 = cv2.imread(os.path.join(img_dir, img3['file_name']))
imgid1, imgid2, imgid3 = images['images'][0]['id'], images['images'][1]['id'], images['images'][2]['id']
imid3d = str(imgid1) + '_' + str(imgid2) + '_' + str(imgid3)
anns2d1, anns2d2, anns2d3 = anno_2d[str(imgid1)], anno_2d[str(imgid2)], anno_2d[str(imgid3)]
anns3d = anno3d[imid3d]
if viz_2d:
im1 = viz2d(im1, anns2d1, viz_attr)
im2 = viz2d(im2, anns2d2, viz_attr)
im3 = viz2d(im3, anns2d3, viz_attr)
if show_3dto2dproj:
for ann3d in anns3d:
tr_mat0 = np.array(camma_mvor_gt['cameras_info']['camParams'][
'extrinsics'][0]).reshape((4, 4))
tr_mat1 = np.array(camma_mvor_gt['cameras_info']['camParams'][
'extrinsics'][1]).reshape((4, 4))
tr_mat2 = np.array(camma_mvor_gt['cameras_info']['camParams'][
'extrinsics'][2]).reshape((4, 4))
pt3d0 = transformGivenTrfMatrix(ann3d, np.linalg.inv(tr_mat0))
pt3d1 = transformGivenTrfMatrix(ann3d, np.linalg.inv(tr_mat1))
pt3d2 = transformGivenTrfMatrix(ann3d, np.linalg.inv(tr_mat2))
pt2d0 = projectCam3DTo2D(pt3d0, camma_mvor_gt['cameras_info']['camParams']['intrinsics'][0])
pt2d1 = projectCam3DTo2D(pt3d1, camma_mvor_gt['cameras_info']['camParams']['intrinsics'][1])
pt2d2 = projectCam3DTo2D(pt3d2, camma_mvor_gt['cameras_info']['camParams']['intrinsics'][2])
im1 = viz2d(im1, pt2d0, viz_projection=True)
im2 = viz2d(im2, pt2d1, viz_projection=True)
im3 = viz2d(im3, pt2d2, viz_projection=True)
if not viz_3d:
# just show 2D annotations
if save_gt:
if not os.path.isdir(os.path.join(save_gt, 'render')):
os.makedirs(os.path.join(save_gt, 'render'))
h1, w1 = im1.shape[:2]
h2, w2 = im2.shape[:2]
h3, w3 = im3.shape[:2]
vis = np.zeros((max(h1, h2), w1 + w2 + w3, 3), np.uint8)
vis[:h1, :w1, :3] = im1
vis[:h2, w1:w1 + w2, :3] = im2
vis[:h2, w1 + w2:w1 + w2 + w3, :3] = im3
cv2.imwrite(os.path.join(save_gt, 'render/' + imid3d + '.png'), vis)
print('saving image =>', os.path.join(save_gt, 'render/' + imid3d + '.png'))
else:
cv2.imshow("cam-1", im1)
cv2.imshow("cam-2", im2)
cv2.imshow("cam-3", im3)
k = cv2.waitKey(0)
if k == 27 or k == ord('q'): # wait for ESC or q key to exit
cv2.destroyAllWindows()
break
else:
# show 2D as well as 3D annotations
fig.add_subplot(2, 2, 1)
plt_imshow(im1, 'cam-1')
fig.add_subplot(2, 2, 2)
plt_imshow(im2, 'cam-2')
fig.add_subplot(2, 2, 3)
plt_imshow(im3, 'cam-3')
# 3D plot
plt_3dplot(fig, anns3d, camma_mvor_gt)
if save_gt:
if not os.path.isdir(os.path.join(save_gt, 'render')):
os.makedirs(os.path.join(save_gt, 'render'))
extent = fig.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
fig.savefig(os.path.join(save_gt, 'render/' + imid3d + '.png'), pad_inches=0.0,
bbox_inches=extent, dpi=200)
print('saving image =>', os.path.join(save_gt, 'render/' + imid3d + '.png'))
else:
plt.show()
break
plt.waitforbuttonpress(-1)
else:
# just show the images without any annotations
createopencvwindows()
for images in camma_mvor_gt['multiview_images']:
(img1, img2, img3) = (images['images'][0], images['images'][1], images['images'][2])
cv2.imshow("cam-1", cv2.imread(os.path.join(img_dir, img1['file_name'])))
cv2.imshow("cam-2", cv2.imread(os.path.join(img_dir, img2['file_name'])))
cv2.imshow("cam-3", cv2.imread(os.path.join(img_dir, img3['file_name'])))
k = cv2.waitKey(0)
if k == 27 or k == ord('q'): # wait for ESC or q key to exit
cv2.destroyAllWindows()
break
if __name__ == '__main__':
main(parse_args())