forked from IBM/cdfsl-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
io_utils.py
executable file
·62 lines (52 loc) · 3.68 KB
/
io_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import os
import glob
import argparse
import backbone
model_dict = dict(
ResNet10 = backbone.ResNet10)
def parse_args(script):
parser = argparse.ArgumentParser(description= 'few-shot script %s' %(script))
parser.add_argument('--dataset' , default='miniImagenet', help='training base model')
parser.add_argument('--model' , default='ResNet10', help='backbone architecture')
parser.add_argument('--method' , default='baseline', help='baseline/protonet')
parser.add_argument('--train_n_way' , default=5, type=int, help='class num to classify for training')
parser.add_argument('--test_n_way' , default=5, type=int, help='class num to classify for testing (validation) ')
parser.add_argument('--n_shot' , default=5, type=int, help='number of labeled data in each class, same as n_support')
parser.add_argument('--train_aug' , action='store_true', help='perform data augmentation or not during training ')
parser.add_argument('--freeze_backbone' , action='store_true', help='Freeze the backbone network for finetuning')
parser.add_argument('--models_to_use', '--names-list', nargs='+', default=['miniImageNet', 'caltech256', 'DTD', 'cifar100', 'CUB'], help='pretained model to use')
parser.add_argument('--fine_tune_all_models' , action='store_true', help='fine-tune each model before selection') #still required for save_features.py and test.py to find the model path correctly
if script == 'train':
parser.add_argument('--num_classes' , default=200, type=int, help='total number of classes in softmax, only used in baseline') #make it larger than the maximum label value in base class
parser.add_argument('--save_freq' , default=50, type=int, help='Save frequency')
parser.add_argument('--start_epoch' , default=0, type=int,help ='Starting epoch')
parser.add_argument('--stop_epoch' , default=400, type=int, help ='Stopping epoch') # for meta-learning methods, each epoch contains 100 episodes
elif script == 'save_features':
parser.add_argument('--split' , default='novel', help='base/val/novel') #default novel, but you can also test base/val class accuracy if you want
parser.add_argument('--save_iter', default=-1, type=int,help ='save feature from the model trained in x epoch, use the best model if x is -1')
elif script == 'test':
parser.add_argument('--split' , default='novel', help='base/val/novel') #default novel, but you can also test base/val class accuracy if you want
parser.add_argument('--save_iter', default=-1, type=int,help ='saved feature from the model trained in x epoch, use the best model if x is -1')
parser.add_argument('--adaptation' , action='store_true', help='further adaptation in test time or not')
else:
raise ValueError('Unknown script')
return parser.parse_args()
def get_assigned_file(checkpoint_dir,num):
assign_file = os.path.join(checkpoint_dir, '{:d}.tar'.format(num))
return assign_file
def get_resume_file(checkpoint_dir):
filelist = glob.glob(os.path.join(checkpoint_dir, '*.tar'))
if len(filelist) == 0:
return None
filelist = [ x for x in filelist if os.path.basename(x) != 'best_model.tar' ]
epochs = np.array([int(os.path.splitext(os.path.basename(x))[0]) for x in filelist])
max_epoch = np.max(epochs)
resume_file = os.path.join(checkpoint_dir, '{:d}.tar'.format(max_epoch))
return resume_file
def get_best_file(checkpoint_dir):
best_file = os.path.join(checkpoint_dir, 'best_model.tar')
if os.path.isfile(best_file):
return best_file
else:
return get_resume_file(checkpoint_dir)